Where’s Waldo? Visualizing Collinearity Diagnostics

Michael FRIENDLY and Ernest KWAN

Collinearity diagnostics are widely used, but the typical
tabular output used in almost all software makes it hard to tell
what to look for and how to understand the results. We describe
a simple improvement to the standard tabular display, a graphic
rendition of the salient information as a ‘“‘tableplot,” and
graphic displays designed to make the information in these
diagnostic methods more readily understandable. In addition,
we propose a visualization of the contributions of the predictors
to collinearity through a “collinearity biplot,” which is simul-
taneously a biplot of the smallest dimensions of the correlation
matrix of the predictors, Ry, and the largest dimensions of R}, ;(,
on which the standard collinearity diagnostics are based.
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1. INTRODUCTION

Q: (Collinearity diagnostics and remedies): “Some
of my collinearity diagnostics have large values, or
small values, or whatever they’re not supposed to
have. Is this bad? If so, what can we do about it?”’
(Source: http://www.sociology.ohio-state.edu/people/
ptv/fag/collinearity.htm)

Problems in estimation in multiple regression models that
arise from influential observations and high correlations among
the predictors were first described in a comprehensive way
in Belsley, Kuh, and Welsch’s (1980) Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity. This
book proved to be a highly influential point on the landscape of
diagnostic methods for regression, but not always one of high
leverage, at least in graphical methods for visualizing and un-
derstanding collinearity diagnostics.
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Later, David Belsley wrote “A Guide to Using the Col-
linearity Diagnostics” (Belsley 1991a), which seemed to
promise a solution for visualizing these diagnostics. For con-
text, it is worth quoting the abstract in total:

The description of the collinearity diagnostics as
presented in Belsley, Kuh, and Welsch’s, Regression
Diagnostics: Identifying Influential Data and Sources
of Collinearity, is principally formal, leaving it to
the user to implement the diagnostics and learn to
digest and interpret the diagnostic results. This paper
is designed to overcome this shortcoming by describ-
ing the different graphical displays that can be used to
present the diagnostic information and, more impor-
tantly, by providing the detailed guidance needed to
promote the beginning user into an experienced
diagnostician and to aid those who wish to incorpo-
rate or automate the collinearity diagnostics into a
guided-computer environment. (Belsley 1991a, p. 33)

Alas, the “graphical displays’ suggested were just tables—
of eigenvalues, condition numbers, and coefficient variance
proportions associated with the collinearity diagnostics. There
is no doubt that Belsley’s suggested tabular displays have
contributed to the widespread implementation and use of these
diagnostics. Yes, as the initial quote for this introduction
indicates, users are often uncertain about how to interpret these
tabular displays.

To make the point of this article more graphic, we liken the
analyst’s task in understanding collinearity diagnostics to that
of the reader of Martin Hansford’s successful series of books,
Where’s Waldo (titled Where’s Wally in the UK, Wo ist Walter
in Germany, and so forth). These consist of a series of full-page
illustrations of hundreds of people and things and a few Wal-
dos—a character wearing a red-and-white-striped shirt and hat,
glasses, and carrying a walking stick or other paraphernalia.
Waldo was never disguised, yet the complex arrangement of
misleading visual cues in the pictures made him very hard to
find. Collinearity diagnostics often provide a similar puzzle.

The plan of this article is as follows: We first describe a
simple example that illustrates the current state-of-the-art for
the presentation of collinearity diagnostics. Section 2 summarizes
the standard collinearity diagnostics in relation to the classic
linear regression model, y = X3 + €. In Section 3 we suggest
some simple improvements to the typical tabular displays and
a graphic rendering called a ‘“‘tableplot” to make these diag-
nostics easier to read and understand. Section 4 describes some
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graphic displays based on the biplot (Gabriel 1971) that helps
interpret the information in collinearity diagnostics. Section 5
describes another example and provides links to software and
other examples.

It is important to say here what this article does not address.
Collinearity in regression models is a large topic, and the
answer to the last question in the initial quote (“‘If so, what can
we do about it?””) would take this article too far afield. The
methods described herein do provide a means of seeing what is
potentially harmful, whether large or small, and thus answers
the question “Is this bad?”” More important, the graphic displays
related to these questions can often say why something about
the data is good or bad.

1.1 Example: Cars Data

As a leading example, we use the Cars dataset from the 1983
ASA Data Exposition (http://stat-computing.org/dataexpo/
1983.html) prepared by Ernesto Ramos and David Donoho.
This dataset contains 406 observations on the following seven
variables: MPG (miles per gallon), cylinder (number of cylinders),
engine (engine displacement measured in cubic inches), horse
(horsepower), weight (vehicle weight measure in pounds), accel
(time to accelerate from 0-60 mph, measured in seconds), and
year (model year, modulo 100). An additional categorical variable
identifies the region of origin (American, European, Japanese),
which is not analyzed here. For these data, the natural questions
concern how well MPG can be explained by the other variables.

Collinearity diagnostics are not part of the standard output
of widely used statistical software. They must be explicitly
requested by using options (SAS), menu choices (SPSS), or
other packages (R: car, perturb).

As explained in the next section, the principal collinearity
diagnostics include (a) variance inflation factors, (b) condition
indices, and (c) coefficient variance proportions. To obtain this
output in SAS, one can use the following syntax, using the
options VIF and COLLINOINT.

proc reg data = cars;
model mpg = weight year engine horse
accel cylinder / vif

collinoint; run;

Another option, COLLIN, produces collinearity diagnostics
that include the intercept. However, these are useless unless
the intercept has a real interpretation and the origin on the
regressors is contained within the predictor space, as explained
in Section 2.2. See Fox (1997, p. 351) and the commentary
surrounding Belsley (1984) for discussion of this issue. We
generally prefer the intercept-adjusted diagnostics, but the
choice is not material to the methods presented here.

The model specified earlier fits very well, with R® = 0.81;
however, the ¢ tests for parameters shown in Table 1 indicate
that only two predictors—weight and year—are significant.
Table 1 also shows the variance inflation factors. By the rules
of thumb described later, four predictors—weight, engine,
horse, and cylinder—have potentially serious problems of
collinearity, or at least cause for concern. The condition indices

Table 1. Cars data: parameter estimates and variance

inflation factors

Parameter Variance
Variable df  estimate  Standard error ¢ Value Pr> ¢ inflation
Intercept 1 —14.63175 4.88451 -3.00 0.0029 0
Weight 1 —0.00678 0.00067704 -10.02  <0.0001 10.857
Year 1 0.76205 0.05292 14.40 <0.0001 1.253
Engine 1 0.00848 0.00747 1.13 0.2572  20.234
Horse 1 -0.00290  0.01411 -0.21 0.8375 9.662
Accel 1 0.06121 0.10366 0.59 0.5552 2.709
Cylinder 1 -0.34602  0.33313 —-1.04 0.2996  10.658

NOTE: df, degrees of freedom.

and coefficient variance proportions are given in Table 2. As
we describe later, we might consider the last two rows to show
evidence of collinearity. However, the information presented
here hardly gives rise to a clear understanding.

2. BACKGROUND: NOTATION AND
COLLINEARITY DIAGNOSTICS

Consider the classic linear regression model, y = X8 + €,
where y is an n X 1 vector of responses; X is an n X p full-rank
matrix of predictors, the first column of which consists of 1s;
B is a p X 1 vector of parameters to be estimated, where, by
convention, the first element (intercept) is denoted By; and € is
an n X 1 vector of errors, with € (€) = 0 and V(e) = o*I. The
usual least-squares estimates of the parameters B are given
by b=B = (X'’X)"'X'y and V) = ¢ (X'X)"!, where the
standard deviations of the parameters, which inversely reflect
the precision of estimation, are given by [diag V(b)]">.

2.1 Variance Inflation

It can be shown (e.g., Fox 1984) that the sampling variances
of the nonintercept parameter estimates can be expressed as

a? 1
b)) = X 1
V( ]) (I’l - 1)5‘12 (1 - RJ2\ 0thers>’ ( )

is the sample variance of the j-th column X, and
Rf‘ others 18 the squared multiple correlation from the regression
of X; on the other predictors. It is easily seen that the second
term in Equation (1) is a factor that multiplies the parameter
variances as a consequence of correlations among the pre-
dictors. This term, called the “‘variance inflation factor’ (VIF)
by Marquandt (1970) has become a standard collinearity
diagnostic. When the predictors are all uncorrelated, all Rj2 =0
and all VIF; have their minimum value of 1. As any Rj2
approaches 1 (complete linear dependence on the other pre-
dictors), VIF; approaches o.
In the linear regression model with standardized predictors,
the covariance matrix of the estimated intercept-excluding

parameter vector b* has the simpler form

o2

V(') = n_—lR)}}(, (2)

where sj?

where Ryy is the correlation matrix among the predictors. It can
then be seen that the VIF; are just the diagonal entries of R;)}.
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Table 2. Cars data: condition indices and variance proportions, in the form displayed by most statistical software

Proportion of variation

No. Eigenvalue Condition index Weight Year Engine Horse Accel Cylinder
1 4.25623 1.00000 0.00431 0.00968 0.00256 0.00523 0.00922 0.00457
2 0.83541 225716 0.00538 0.85620 0.00114 0.00003952 0.00396 0.00296
3 0.68081 2.50034 0.01278 0.05358 0.00177 0.00244 0.42400 0.00515
4 0.13222 5.67358 0.08820 0.00581 0.01150 0.29168 0.06140 0.31720
5 0.05987 8.43157 0.71113 0.06882 0.00006088 0.66021 0.49182 0.11100
6 0.03545 10.95701 0.17819 0.00592 0.98297 0.04040 0.00961 0.55912

2.2 Condition Indices and Variance Proportions

Large VIF; indicate predictor coefficients with a precise
estimation that is degraded as a result of a large Rf‘ others 10 €0
further, we need to determine (a) how many dimensions in the
space of the predictors are associated with nearly collinear
relations and (b) which predictors are most strongly implicated
in each of these.

In the predictor space, the linear relations among the var-
iables can be seen most easily in terms of the principal com-
ponent analysis (PCA) of the standardized predictors, or,
equivalently, in terms of the eigen decomposition of Ryy
as Ryy = VAV’, where A is a diagonal matrix with entries A | =
Ay = .-+ = A, = 0 that are the ordered eigenvalues of Ryy, and
V is the p X p matrix with columns that are the corresponding
eigenvectors. By elementary matrix algebra, the eigen decom-
position of Ry is then

Ry =VA'V. (3)

Thus, Ryyx and R;Ql( have the same eigenvectors, and the
eigenvalues of Ry, are just A;~'. Using Equation (3), the var-
iance inflation factors may be expressed as

)4 Vzk
VIF =) = (4)
k=1 "k

which shows that only the small eigenvalues contribute to
variance inflation, but only for those predictors that have large
eigenvector coefficients on those small components. These
facts lead to the following diagnostic statistics for collinearity:

Condition indices: The smallest of the eigenvalues, those
A =~ 0, indicate collinearity, and the number of small values
indicates the number of near-collinear relations. Because the
sum of the eigenvalues, 2A; = p, which increases with the
number of predictors, it is useful to scale them all in relation
to the largest. This leads to “condition indices,” defined as
Kk = \/A1/Ag. These have the property that the resulting
numbers have common interpretations regardless of the
number of predictors. By common conventions (Belsley
1991b) condition indices from 10 to 30 are considered values
of which to be wary, more than 30 indicates trouble, and
more than 100 is a sign of potential disaster in estimation.

Coefficient variance proportions: Large VIFs indicate var-
iables that are involved in some nearly collinear relations, but
they do not indicate with which other variable(s) each is in-
volved. For this purpose, Belsley, Kuh, and Welsch (1980) and
Belsley (1991b) proposed calculation of the proportions of var-
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iance of each variable associated with each principal component
as a decomposition of the coefficient variance for each dimen-
sion. These may be expressed (Fox, 1984, Section 3.1.3) as

Note that for orthogonal regressors, all condition indices k; = 1
and the matrix of coefficient variance proportions, P = (pj) =
I. Thus, Belsley (1991a, b) recommended that the sources of
collinearity be diagnosed (a) only for those components with
large k; and (b) for those components for which pj is large
(say, pjx = 0.5) on two or more variables.

3. IMPROVED TABULAR DISPLAYS: HOW
MANY WALDOS?

The standard tabular display of condition indices and var-
iance proportions in Table 2 suffers mainly from the fact that
the most important information is disguised by being embed-
ded in a sea of mostly irrelevant numbers, arranged by inad-
vertent design to make the user’s task harder. One could easily
nominate this design as a Where’s Waldo for tabular display.

The first problem is that the table is sorted by decreasing
eigenvalues. This would otherwise be typical and appropriate
for eigenvalue displays, but for collinearity diagnostics, it hides
Waldo among the bottom rows. It is more useful to sort by
decreasing condition numbers.

A second problem is that the variance proportions corre-
sponding to small condition numbers are totally irrelevant to
problems of collinearity. Including them, perhaps out of a
desire for completeness, would otherwise be useful, but here it
helps Waldo avoid detection. For the purpose for which these
tables are designed, it is better simply to suppress the rows
corresponding to low condition indices. In this article we adopt
the practice of showing one more row than the number of
condition indices greater than 10 in tables, but there are even
better practices.

Software designers who are troubled by incompleteness can
always arrange to make the numbers we would suppress per-
ceptually less important (e.g., smaller in size or closer to
background in texture or shading), as in Table 3. A simple
version of this is to use a “fuzz” value (e.g., fuzz = 0.5) such
that all variance proportions less than fuzz are blanked out or
replaced by a place holder (‘. ). For example, the colldiag
function in the R package perturb (Hendrickx, 2008) has a
print method that supports a fuzz argument.



Table 3. Cars data: revised condition indices and variance
proportions display
Condition Proportion of variation (X 100)
No. index  FEigenvalue Weight Year Engine Horse Accel Cylinder
6 10.96 0.03545 18 1 98 4 1 56
5 8.43 0.05987 71 7 0 66 49 11

NOTE: Variance proportions greater than 0.5 are in bold type.

The third problem is that, even for those rows (large con-
dition numbers) we want to see, the typical displayed output
offers Waldo further places to hide among numbers printed to
too many decimals. Do we really care that the variance pro-
portion for engine on component five is 0.00006088? For the
large condition numbers, we should only be concerned with the
variables that have large variable proportions associated with
those linear combinations of the predictors.

For the Cars data, we need only look at the rows corre-
sponding to the highest condition indices. Any sharp cutoff for
the coefficient variance proportions to display (e.g., pjx = 0.5)
runs into difficulties with borderline values, so in Table 3, we
highlight the information that should capture attention by (a)
removing all decimals and (b) distinguishing values = 0.5 by
font size and style; other visual attributes could also be used.
From this, it is easily seen that there are two Waldos in this
picture. The largest condition index corresponds to a near-

linear dependency involving engine size and number of cyl-
inders; the second largest involves weight and horsepower,
with a smaller contribution of acceleration. Both of these have
clear interpretations in terms of these variables on automobiles:
Engine size is directly related to number of cylinders and,
orthogonal to that dimension, there is a relation connecting
weight to horsepower.

3.1 Tableplots

Table 2 and even the collinearity-targeted version, Table 3,
illustrate how difficult it is to display quantitative information
in tables so that what is important to see—patterns, trends,
differences, or special circumstances—are made directly vis-
ually apparent to the viewer. Tukey (1990) referred to this
property as ‘“‘interoccularity”: the message hits you between
the eyes.

A “‘tableplot” is a semigraphic display designed to over-
come these difficulties, developed by Ernest Kwan (2008). The
essential idea is to display the numeric information in a table
supplemented by symbols with a size that is proportional to the
cell value, and with other visual attributes (shape, color fill,
background fill, and so on) that can be used to encode addi-
tional information essential to direct visual understanding. The
method is far more general than described here and illustrated
in the context of collinearity diagnostics. See Kwan et al.
(2009) for some illustrations of the use for factor analysis
models.

CondIndex Weight Year Engine Horse Accel Cylinder
O I ' '
18 4 1 56
s ] o Q o
8.43 7 0 49 11
# L] 7 10
5.67 9 1 1 29 6 32
#3 O T ° Q
25 1 5 0 0 42 1
#2 0
2.26 1 86 0 0 0 0
#1 @
1 0 1 0 1 1 0

Figure 1.

Tableplot of condition indices and variance proportions for the Cars data. In column 1, the square symbols are scaled relative to

a maximum condition index of 30. In the remaining columns, variance proportions (X 100) are shown as circles scaled relative to a maximum

of 100.
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Figure 1 is an example of one tableplot display design for
collinearity diagnostics. All the essential numbers in Table 2
are shown, but are encoded in such a way as to make their
interpretation more direct. The condition indices are shown by
the area of the white squares in column 1. In this example, these
are scaled so that a condition index of 30 corresponds to a
square that fills the cell. The background color of the cells in
this column indicate a reading of the severity of the condition
index, k;. In this example, green (“OK”) indicates k; < 5,
yellow (““warning’’) indicates 5 = k; < 10, and red (*‘danger”)
indicates k; = 10. The remaining columns show the collin-
earity variance proportions, 100 X pj, with circles scaled
relative to a maximum of 100, and with color fill (white, pink,
red) distinguishing the ranges {0-20, 20-50, 50-100}.

The details of the particular assignments of colors and ranges
to the condition indices and variance proportions are surely
debatable, but the main point here is that Figure 1 succeeds
where Table 2 does not, and Table 3 only gains by hiding
irrelevant information.

4. GRAPHICAL DISPLAYS: BIPLOTS

As we have seen, the collinearity diagnostics are all functions
of the eigenvalues and eigenvectors of the correlation matrix of
the predictors in the regression model, or alternatively, the
singular value decomposition (SVD) of the X matrix in the
linear model (excluding the constant). The standard biplot
(Gabriel 1971; Gower and Hand 1996) can be regarded as a
multivariate analog of a scatterplot, obtained by projecting a
multivariate sample into a low-dimensional space (typically of

two or three dimensions) that accounts for the greatest variance
in the data. With the symmetric (PCA) scaling used here, this is
equivalent to a plot of principal component scores of the mean-
centered matrix X of predictors for the observations (shown as
points or case labels), together with principal component
coefficients for the variables (shown as vectors) in the same
two-dimensional (or three-dimensional) space.

The standard biplot, of the first two dimensions, corre-
sponding to the largest eigenvalues of Ryy is shown in Figure 2.
This is useful for visualizing the principal variation of the
observations in the space of the predictors. It can be seen in
Figure 2 that the main dimension of variation among the
automobile models is in terms of engine size and power;
acceleration time is also strongly related to dimension 1,
although inversely. The second dimension (accounting for an
additional 13.8% of predictor variance) is largely determined
by model year.

In these plots, the following statements hold: (a) The vari-
able vectors have their origin at the mean on each variable,
and point in the direction of positive deviations from the mean
on each variable. (b) The angles between variable vectors por-
tray the correlations between them, in the sense that the cosine
of the angle between any two variable vectors approximates
the correlation between those variables (in the reduced
space). (c) Similarly, the angles between each variable vector
and the biplot axes approximate the correlation between
them. (d) Because the predictors were scaled to unit length, the
relative length of each variable vector indicates the proportion
of variance for that variable represented in the low-rank
approximation. (e) The orthogonal projections of the observation

1.0 4
~ 0.5
B
©
™~
(s
2 weight
2 ylinder
g engine
E 103
O 0.0 fmmmm— 25RO ey Ut S ——— horse—————
6 8%
-0.5 4
T T T T T T T
-1.0 0.5 0.0 0.5 1.0

Dimension 1 (71.39%)

Figure 2. Standard biplot of the Cars data, showing the first two dimensions. The observations are labeled with their case numbers. The right

half of the plot consists almost entirely of U.S. cars.
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points on the variable vectors show approximately the value
of each observation on each variable. (f) By construction, the
observations, shown as principal component scores, are
uncorrelated.

However, the standard biplot is less useful for visualizing
the relations among the predictors that lead to nearly collinear
relations. Instead, biplots of the smallest dimensions show
these relations directly, and can show other features of the data
as well, such as outliers and leverage points.

4.1 Visualizing Variance Proportions

As with the tabular display of variance proportions, Waldo is
hiding in the dimensions associated with the smallest eigen-
values (largest condition indices). In addition, it turns out that
outliers in the predictor space—high leverage observa-
tions—can often be seen as observations far from the centroid
in the space of the smallest principal components.

Figure 3 shows the biplot of the Cars data for the smallest
two dimensions—what we can call the “collinearity biplot.”
The projections of the variable vectors on the Dimension 5 and
Dimension 6 axes are proportional to their variance proportions
in Table 2. The relative lengths of these variable vectors can be
considered to indicate the extent to which each variable con-
tributes to collinearity for these two near-singular dimensions.

Thus, we see that (as in Table 3) Dimension 6 is largely
determined by engine size, with a substantial relation to
number of cylinders. Dimension 5 has its strongest relations to
weight and horse. In the reduced tabular display, Table 3, we
low-lighted all variance proportions less than 0.5, but this is
unnecessary in the graphical representation.

Moreover, there is one observation (no. 20) that stands out as
an outlier in predictor space, far from the centroid. It turns out
that this vehicle, a Buick Estate wagon, is an early-year (1970)
American behemoth, with an 8-cylinder, 455-cubic inch, 225-
horsepower engine, and is able to go from 0 to 60 mph in 10
seconds. (Its mpg is only slightly underpredicted from the
regression model, however.)

This and other high-leverage observations may be seen in
other graphical displays, but it is useful to know that they will
often also be quite noticeable in what we propose here as the
collinearity biplot. The webpage of supplementary materials
for this article (Section 5.2) shows a robust outlier detection
QQ plot and an influence plot of these data for comparison with
more well-known methods.

4.2 Visualizing Condition Indices

The condition indices are defined in terms of the ratios
A1/A; (on a square root scale). It is common to refer to the
maximum of these, \/)\1//\1,, as the ‘“‘condition number” for
the entire system, giving the worst near singularity for the
entire model.

A related visualization, which potentially provides more in-
formation than just the numerical condition indices, can be seen
in biplots of Dimension 1 versus Dimension k, where typically
only the k corresponding to the smallest eigenvalues are of
interest. To visualize the relative size of A, to A; it is useful to
overlay this plot with a data ellipse for the component scores.

Figure 4 shows the condition number biplot for the Cars
data, where the condition number can be approximately seen as
the ratio of the horizontal to the vertical dimensions of the data
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Figure 3.

Collinearity biplot of the Cars data, showing the last two dimensions. The projections of the variable vectors on the coordinate axes

are proportional to their variance proportions. To reduce graphic clutter, only the eight most outlying observations in predictor space are
identified by case labels. An extreme outlier (case 20) appears in the upper right corner.
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Figure 4. Condition number biplot of the Cars data, showing the first and last dimensions, with a 68% data ellipse for the component scores.
The square root of the ratio of the horizontal and vertical axes of the ellipse portrays the condition number.

ellipse. As the numerical values of the condition indices in
Table 2 also indicate, ill-conditioning in this example is not
particularly severe. In general, however, the relative lengths of
the variable vectors approximately indicate those variables that
contribute to ill-conditioning.

The observations can also be interpreted in this display
in relation to their projections on the variable vectors. Case
20, the main high-leverage point, is seen as having high
projections on Dimension 1, which in this view is seen as the
four variables with high VIFs: engine, horse, weight, and
cylinder. The observations that contribute to large condition
indices are those with large projections on the smallest com-
ponent: Dimension 6.

5. OTHER EXAMPLES

5.1 Biomass Data

Rawlings (1988, Table 13.1) described analyses of a dataset
concerned with the determination of soil characteristics influ-
encing the aerial biomass production of a marsh grass, Spartina
alterniflora, in the Cape Fear estuary of North Carolina. The
soil characteristics consisted of 14 physical and chemical prop-
erties, measured at nine sites (three locations X three vegetation
types), with five samples per site, giving n = 45 observations.
The data were collected as part of a Ph.D. dissertation by Rick
Linthurst, and were referred to by Rawlings as the Linthall
data set.

The quantitative predictors (i.e., excluding location and
type) were H2S: free sulfide; sal: salinity; Eh7: redox potential
at pH 7; pH: soil pH; buf: buffer acidity at pH 6.6; and con-
centrations of the following chemical elements and com-
pounds—P: phosphorus; K: potassium; Ca: calcium; Mg:
magnesium; Na: sodium; Mn: manganese; Zn: zinc; Cu:
copper, NH4: ammonium.

It should be noted that if the goal of the study was simply to
describe biomass for the given time frame and locations, col-
linearity would be less of an issue. But here, the emphasis in
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analysis focuses on identifying the ‘“‘important” variable
determinants of biomass.

The model with all 14 quantitative predictors fits very well
indeed, with R> = 0.81. However, the parameter estimates
and their standard errors shown in Table 4 indicate that only two
variables, K and Cu, have significant ¢ statistics, with all the
others being quite small in absolute value. For comparison, a
stepwise selection analysis using 0.10 as the significance level to
enter and remove variables selected the four-variable model
consisting of pH, Mg, Ca, and Cu (in that order), giving R*> =
0.75. Other selection methods were equally inconsistent and
perplexing in their possible biological interpretations. Such results
are a clear sign of collinearity. We see from Table 4 that many of
the VIFs are quite large, with six of them (pH, buf, Ca, Mg, Na,
and Zn) exceeding 10. How many Waldos are hiding here?

The condition indices and variance proportions for the full
model are shown, in our preferred form, in Table 5, where,
according to our rule of thumb, 14 #(Condition Index > 10),

Table 4. Linthall data: parameter estimates and variance
inflation factors

Parameter Standard

Variable  df estimate error t Value  Pr> |1 VIF
Intercept 1 2909.93 3412.90 0.85 0.401 0

H2S 1 0.42900 2.9979 0.14 0.887 3.02
sal 1 —23.980 26.170 -0.92 0.367 3.39
Eh7 1 2.5532 2.0124 1.27 0.214 1.98
pH 1 242.528 334.173 0.73 0.474 62.08
buf 1 —-6.902 123.821 -0.06 0.956 34.43
P 1 -1.702 2.640 -0.64 0.524 1.90
K 1 —1.047 0.482 -2.17 0.038 7.37
Ca 1 -0.1161 0.1256 -0.92 0.363 16.66
Mg 1 -0.2802 0.2744 -1.02 0.315 23.76
Na 1 0.00445 0.02472 0.18 0.858 10.35
Mn 1 -1.679 5.373 -0.31 0.757 6.18
Zn 1 -18.79 21.780 —0.86 0.395 11.63
Cu 1 345.16 112.078 3.08 0.004 4.83
NH4 1 -2.705 3.238 -0.84 0.410 8.38

NOTE: df, degrees of freedom.



Table 5.

Linthall data: condition indices and variance proportions (X100)

Condition
No. index Eigenvalue H2S sal Eh7 pH buf P K Ca Mg Na Mn Zn Cu NH4
14 22.78 0.0095 22 25 3 95 70 1 8 60 16 21 34 2 4 17
13 12.84 0.0298 0 9 2 0 12 8 28 1 67 25 16 45 0 21
12 10.43 0.0453 0 16 3 4 13 5 0 16 15 28 2 9 43 24
11 7.53 0.0869 19 3 0 0 4 1 7 18 1 5 14 32 9 2
NOTE: Variance proportions greater than 0.4 are in bold.

we include the four rows with condition indices greater than
seven. Following Belsley’s (1991b) rules of thumb, it is only
useful to interpret those entries (a) for which the condition
indices are large and (b) where two or more variables have
large portions of their variance associated with a near singu-
larity. Accordingly, we see that there are two Waldos con-
tributing to collinearity: the smallest dimension (no. 14),
consisting of the variables pH, buf, and Ca; and the next
smallest (no. 13), consisting of Mg and Zn. The first of these is
readily interpreted as indicating that soil pH is highly deter-
mined by buffer acidity and calcium concentration.

Alternatively, Figure 5 shows a tableplot of the largest
10 condition indices and associated variance proportions, using
the same assignments of colors to ranges as described for
Figure 1. Among the top three rows shaded red for the condition
index, the contributions of the variables to the smallest dimen-
sions is more readily seen than in tabular form (Table 5).

The standard biplot (Fig. 6) shows the main variation of the
predictors on the two largest dimensions in relation to the
observations. Here, these two dimensions account for 62% of
the variation in the 14-dimensional predictor space. As before,

we can interpret the relative lengths of the variable vectors as
the proportion of each variable’s variance shown in this two-
dimensional projection, and (the cosines of) the angles between
the variable vectors as the approximation of their correlation
shown in this view.

Based on this evidence it is tempting to conclude, as did
Rawlings (1988, p. 366) that there are two clusters of highly
related variables that account for collinearity: Dimension 1,
having strong associations with five variables (pH, Ca, Zn,
buf, and NH4), and Dimension 2, whose largest associations
are with the variables K, Na, and Mg. This conclusion is
wrong!

The standard biplot does convey useful information, but is
misleading for the purpose of diagnosing collinearity
because we are only seeing the projection into the two-
dimensional predictor space of largest variation and inferring,
indirectly, the restricted variation in the small dimensions
where Waldo usually hides. In the PCA (or SVD) on which
the biplot is based, the smallest four dimensions (shown in
Table 5) account for 1.22% of the variation in predictor
space. Figure 7 shows the collinearity biplot for the smallest

Condldx H2S sal Eh7 pH buf P K Ca Mg Na Mn Zn Cu NH4
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Figure 5.

Tableplot of the 10 largest condition indices and variance proportions for the Linthall data. In column 1, the symbols are scaled

relative to a maximum condition index of 30. In the remaining columns, variance proportions (X 100) are scaled relative to a maximum

of 100.
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Figure 6. Standard biplot of the Linthall data, showing the first two dimensions. The point labels refer to case numbers, which are colored
according to the location of the site.

two dimensions of Ryy or, equivalently, the largest di- Again, this graph provides a more complete visualization of
mensions of R;Ql(, comprising only 0.28% of predictor the information related to collinearity than is summarized in
variation. Table 5, if we remember to interpret only the long variable

0.5

0.4

0.3

0.2

0.1

0.0

Dimension 14 (0.07%)

-0.1 4

-0.2 4

-0.3 4
T T T T T T T T T T T T
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Dimension 13 (0.21%)

Figure 7. Collinearity biplot of the Linthall data, showing the last two dimensions.
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vectors in this plot and their projections on the horizontal and
vertical axes. Variables pH, buf, and Ca to a smaller degree
stand out on Dimension 14, whereas Mg and Zn stand out on
Dimension 13. The contributions of the other variables and the
observations to these nearly singular dimensions would give
the analyst more information to decide on an effective strategy
for dealing with collinearity.

5.2 Further Examples and Software

The data and scripts, for SAS and R, for these examples and
others, will be available at www.math.yorku.ca/SCS/viscollin,
where links for biplot and tableplot software will also be found.

6. DISCUSSION

As we have seen, the standard collinearity diagnostics—
variance inflation factors, condition indices, and the variance
proportions associated with each eigenvalue of Ryx—do pro-
vide useful and relatively complete information about the
degree of collinearity, the number of distinct near singularities,
and the variables contributing to each. However, the typical
tabular form in which this information is provided to the user is
perverse; it conceals, rather than highlights, what is important
to understand.

We have illustrated some simple modifications to the usual
tabular displays designed to make it easier to see the number of
Waldos in the picture and the variables involved in each. The
reordered and reduced forms of these tables are examples of
a general principle of “effect ordering for data display”
(Friendly and Kwan 2003), which translates here as ““in tables
and graphs, make the important information most visually
apparent.” Tableplots take this several steps further to highlight
what is important to be seen directly to the eye. The collinearity

biplot, showing the smallest dimensions, does this too, but also
provides a more complete visualization of the relations among
the predictors and the observations in the space where Waldo
usually hides.

[Received January 2008. Revised September 2008.]
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