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Abstract
The analysis of research data plays a key role in data-driven areas of science. Varieties of mixed research data
sets exist and scientists aim to derive or validate hypotheses to find undiscovered knowledge. Many analysis tech-
niques identify relations of an entire dataset only. This may level the characteristic behavior of different subgroups
in the data. Like automatic subspace clustering, we aim at identifying interesting subgroups and attribute sets.
We present a visual-interactive system that supports scientists to explore interesting relations between aggregated
bins of multivariate attributes in mixed data sets. The abstraction of data to bins enables the application of sta-
tistical dependency tests as the measure of interestingness. An overview matrix view shows all attributes, ranked
with respect to the interestingness of bins. Complementary, a node-link view reveals multivariate bin relations by
positioning dependent bins close to each other. The system supports information drill-down based on both expert
knowledge and algorithmic support. Finally, visual-interactive subset clustering assigns multivariate bin relations
to groups. A list-based cluster result representation enables the scientist to communicate multivariate findings at
a glance. We demonstrate the applicability of the system with two case studies from the earth observation domain
and the prostate cancer research domain. In both cases, the system enabled us to identify the most interesting
multivariate bin relations, to validate already published results, and, moreover, to discover unexpected relations.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques I.5.2 [Computer Graphics]: Design Methodology—Pattern analysis

1. Introduction

The value of research data and the (potential) benefit to so-
ciety is widely accepted [CMZW13]. We classify research
data as data that is gathered in scientific domains with the
goal to gain or verify knowledge. Research data is a basis for
data-driven science [HTT09]. It can be assumed that the data
contains undiscovered knowledge, which makes it attractive
for exploratory data analysis. In addition, various initiatives
for open access of research data exist. Digital object identi-
fiers (DOI) are increasingly attached to research data making
the data citable. The developments contribute to an increased
popularity of research data for collaborative research.

In many cases, the aim to derive and validate hypotheses
shifts the analysis of research data towards an exploratory
process [WR09]. For specific domain problems, visual an-
alytics approaches are already successfully developed, e.g.,
in Biology [MWS∗10]. However, state-of-the-art visual data
representation techniques from the information visualiza-

tion and visual analytics domains are still rarely applied
in many data-centered research domains [TDN11]. In con-
trast, many scientists actually perform at least parts of their
analyses using general purpose tools - most notably, Excel.
This mismatch leaves the question whether visual analyt-
ics techniques can be used as a generic baseline technique.
In this work, we want to support heterogeneous, multivari-
ate data consisting of numerical, ordinal, and categorical at-
tributes. Almost every research domain generates mixed re-
search data sets. We aim to support scientists to validate hy-
potheses and provide exploratory means to generate new hy-
potheses. This raises the following problems to be solved:

C1 Mixed Data Problem The analysis of mixed data is
generally considered difficult [JJJ08]. To make different at-
tribute types comparable, unification strategies have to be
applied. Yet the nature of different data types should still be
reflected by the functional capability and the interactions of
the analytical system.
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Figure 1: The Titanic data set as a proof of concept. Left: Attribute View with ranked attributes and all bin relations above the
interestingness filter. Center: the Bin View aligns related bins close to each other. Right: the Cluster List View provides compact
representations of clustered subspaces. The blue cluster relates to the Birkenhead Drill: ‘women and children first!’.

C2 Multiple Granularity Problem Many analysis tech-
niques search for relations defined for the entire dataset. This
may mask the specific behavior of different subgroups (also
called cohorts) in the data. We call this analysis granular-
ity the bin-level, where observations are made for subsets of
the data, defined by one or more attributes. We argue that
an effective approach for research data should provide ana-
lytical capabilities to identify relations on the attribute-level
(the entire data) and the bin-level.

C3 Measuring Interestingness Users need guidance that
leads to interesting relations. An interesting relation might
be something entirely new to the expert. Alternatively, it
might be a relation which satisfies or disproves expectations
of the expert. In any case, it is challenging to define interest-
ingness in the context of the current domain knowledge. Fur-
thermore, this definition must be adequate for mixed data.
While many analytical approaches use similarity measures
to identify interesting relations, we argue that the measure
must be based on a generic dependency measure. Of course,
specific measures like linear correlations allow for more spe-
cific conclusions. However, we want to ensure that more
general patterns are not overlooked in the first place.

C4 Foraging Multiple Hypotheses Hunting for interesting
relations in complex data sets may be time-consuming, es-
pecially if single relations have to be validated one by one in
a ‘batch-process’. In contrast, the system could just as well
provide a broad range of available relations at startup as an
automated service. In other words, due to the exploratory
information seeking behaviors, systems should prefer re-
call over precision. This change in the analytical workflow
would shift the batch process problem towards a relation-
space overview problem. A careful choice of data abstrac-
tions is needed to provide a) an overview of the data set, b)
an overview of available relations, and c) tight coupling of
both. Thus, visual representations must be easy to translate
to the domain knowledge and vice versa, while remaining
generic enough to cover different types of findings.

C5 Keeping Track of the Relation Space Challenge C4
describes the breadth-first search to support the hypotheses
generation process. Moreover, systems should also provide
depth-first search to support efficient hypotheses validation.
Scientists may themselves want to determine the number of
shown relations. Focusing on subsets of the provided infor-
mation to match specific domain knowledge or to prove ex-
pectations to the relations may be supported by drill-down
capability. A solution to this requires scalability in terms of
dimensionality and complexity. Again in order to solve this
task, a careful choice of filters for both is needed to adapt the
shown proportion of the data set, and the relation-space.

C6 Structuring Subspaces Subspaces may consist of ar-
bitrary intersections of attributes (columns) and instances
(rows). Both the internal structure of subspaces and the inter-
relation between different subspaces may be unknown. How-
ever, for an overview of the data set these subspace structures
are crucial. We identify the need of clustering techniques that
support scientists in the exploration of these structures.

We contribute a system that enables scientists to identify
direct and indirect relations between multiple attributes in
mixed data subsets. The system enables the analysis of re-
lations on the attribute-level and on the bin-level. The in-
terestingness of bin relations is based on statistical depen-
dency measures. The system provides complementary linked
views, showing bin relations in a matrix, a node-link, and
a list metaphor. The number of shown bin relations is in-
teractively steerable. Interactive drill-down based on expert
knowledge and algorithmic support is provided in the matrix
view where scientists can apply filters to focus on most inter-
esting bins and attributes. The node-link view enables scien-
tists to analyze multivariate bin relations. To this end, high-
lighting of multivariate bin relations is supported by inter-
active subspace clustering. The revealed high-level abstrac-
tions can be analyzed with respect to internal and external
relations. To support different information seeking behaviors
of scientists, three clustering techniques are provided.
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We present a proof of concept (see Figure 1) based on the
titanic data set and two case studies from earth observation
and prostate cancer research to demonstrate the applicability
of our techniques. In both case studies, we compare identi-
fied relations to the ground truth provided by domain experts
and, moreover, contribute unexpected findings.

2. Related Work

In this section, we first outline related work in visual ana-
lytics on two prerequisites for our methods. Firstly, we give
an overview of the related work on measuring the strength
of relations. Secondly, we focus on categorical data only to
present binning techniques. Afterwards, we present compet-
ing approaches for the related tasks of feature subset selec-
tion and subspace clustering.

Measuring Interestingness The interestingness of a rela-
tion depends on domain knowledge as well as on its type
or strength. From statistics, a plethora of measures are
known and we present some of them coarsely ordered from
more specific to more generic: similarity measures may
be applied to attributes of multivariate data to identify re-
dundancies, to cluster or arrange attributes in a visualiza-
tion (see for example Yang’s Value and Relation display
[YHW∗07]). While many types of similarity measures ex-
ist, we consider similarity as one of the most specific forms
of a relation. For linear relations in numerical data, one of
the most well-known approaches is Pearson’s Correlation-
Coefficient, which, for example, has been applied in Dim-
Stiller [IMI∗10], or in combinations with scatterplot and
scatterplot matrices [CM84]. This approach is a specific
form of regression analysis, where data is fit to a predefined
model and the fitness translates to the strength of the relation
in terms of this model. Statistical (in)dependency tests like
Pearson’s χ

2-test [RS81] or the G-Test [MS99] are based on
entropy measures. For our technique, we modified these be-
cause they allow for a broad search for all types of relation
as a baseline approach. Interestingly, statistical tests essen-
tially compare something assumed about the data with some-
thing actually measured in the data. The parallel coordinates
metaphor has been used for the analysis of mixed data, as
presented in ParallelSets [KBH06], CComViz [ZKG09], and
VisBricks [LSS∗11]. These techniques support the identifi-
cation of relations between clustering results and attributes.
A visual analytics system for large scale categorical data
was presented by Alsallakh et al. [AAMG12]. Based on the
provided aggregation concept, their Contingency Wheel++
is capable for millions of data records as shown for movie
ratings. Similar to our approach, the bin-level is chosen as
the targeted analysis granularity and Pearson‘s χ

2 test was
applied. In contrast, analysis is bound to a single target at-
tribute. Johannson et al. [JJJ08] use MCA to quantify cat-
egorical data, while Friendly [Fri99] applies MCA to show
multidimensional bin distributions arranged in a scatterplot.

Binning As we unify all data attributes on a categor-
ical level, we have to consider different binning tech-

niques. We distinguish between automated and interac-
tive techniques. Interactive binning is basically identical to
the selection of split-points in decision trees, for which
Ankherst et al. [AEK00] present a comprehensive analy-
sis of both automated and interactive approaches. Visual-
interactive techniques were presented by Hao [HDS∗10],
as well as Novotny and Hauser [NH06]. Most recently,
a visual-interactive regression analysis approach was pre-
sented where data aggregation is heavily applied for attribute
visualization [MP13]. Clustering is a prominent aggregation
technique for multivariate data, automated [Han05] and in-
teractive approaches [SBTK09] have been presented. Visual-
interactive aggregation techniques for hierarchies [EF10],
time series [BRG∗12], and text corpora [LKC∗12] exist.

Feature Subset Selection Selecting appropriate candidates
out of possibly large sets of features is mandatory to im-
prove the predicting performance, the efficiency, and the
transparency. A survey from the machine learning research
was presented by Guyon et al. [GE03]. A prominent class
of approaches transforms variables by linear or non-linear
functions, e.g., dimension reduction. While most of the pre-
sented techniques are automated, interactive variants are
iPCA [JZF∗09] and the DimStiller framework [IMI∗10].
However, our work is based on the selection, not on the
transformation of existing features. Visual-interactive fea-
ture subset selection based on the Mutual information mea-
sure is SmartStripes [MBD∗11]. Similar to this work, the ap-
proach is based on binned multivariate attributes. Guidance-
based concepts for visual-interactive selection of interest-
ing features were presented based on descriptor compari-
son [BvLBS11] and cluster labeling [BRS∗12b].

Subspace Clustering Subspace clustering refers to data
mining techniques closely related to our idea. Its challenge
is the interdependency between the selection of attributes
and the selection of subsets to identify clusters. Jain [Jai10]
and Sim et al. [SGZC13] provide comprehensive overviews,
mentioning subset clustering as a prominent challenge. From
the visual analytics domain, subspace clusters have been
tackled by Assent et al. [AKMS07] and Tatu et al. [TZB∗12].
Like our approach, both approaches present an overview of
the attribute and value space. However, these approaches
perform clustering on numerical attributes, while our ap-
proach tackles the problem for categorical data.

3. Data Abstraction and Algorithmic Capabilities

In this section, we present data structures and algorithmic ca-
pabilities of the system, including data aggregation (Section
3.1), interestingness calculation (Section 3.2), and subspace
clustering techniques (Section 3.3).

3.1. Creating Bins: Aggregation of Data

We define a bin as the atomic data object for the provided
techniques. Every bin represents a set of value(s) of a given
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attribute. For all attributes, the data is aggregated to bins to
provide the following requirements:

• Unification of input variables (C1)
• Support for the analysis of bins and attributes (C2)
• Basis for interestingness calculation (C3)
• Scalability for large data sets (C4)

The binning process has great influence on the calculation
of interesting relations. As a first step, the system estimates
the data type of each loaded attribute. For Excel or WEKA
files, we can fall back to the file header information. We
provide different binning models depending on the attribute
types, each of them able to handle missing values. Binary at-
tributes are aggregated to two bins. For other attribute types,
a parameter a defines the number of resulting bins produced
by the models. If no expert knowledge is available and an au-
tomatic definition is necessary, we suggest to choose a value
of 5-8 for a in order to avoid overlooking local substruc-
tures, but also to have bin populations high enough to guar-
antee statistical reliability. Categorical attributes are binned
in a way that the most frequent a− 1 values are assigned to
individual bins, while the remaining categories are grouped
together. The categorical model supports splitting (if pos-
sible), merging, and re-ordering functionality. For numeri-
cal attributes, we provide domain-preserving and frequency-
preserving binning variants [MP13]. A method based on a
goodness-of-fit measure [SS07] allows to estimate an opti-
mal value for a before the frequency-based binning is ap-
plied. We set the frequency-based binning strategy as a de-
fault since it produces statistically reliable populations and
caused less embarrassments in the discussions with the sci-
entists. Interactively defining the number of bins as well as
splitting and merging of bins is supported. We store binning
results in a config file to accelerate future program starts.

3.2. Identification of Interesting Relations Between Bins

Our interestingness measure must satisfy the following prop-
erties: firstly, it can be applied to mixed data (C1) and sec-
ondly allows to consider bins separately (C2). Thirdly, it al-
lows for the search for deviations between assumptions and
measurements in the data (C3). We consider two methods to
represent interestingness. The first is a standard dependency
measure - Mutual Information [Gra11], which is applied to
the bivariate distribution of bins. The second is developed on
inquiry of the scientists, who where interested in calculating
multiple significance scores at once.

Given binnings (Xi)i,(Yj) j of attributes X and Y we write
pi resp. p j for relative frequencies of bins. The first measure
reads as follows:

MI(X ,Y ) = ∑
i

∑
j

pi j · log
(

pi j

pi p j

)
(1)

The values pi j = p(Xi ∩Yj) are the observed relative fre-
quencies of bivariate bins. If no prior knowledge exists, the
measure models the deviation from the independency as-
sumption pi j = pi · p j for the attributes X and Y.

While the mutual information is an aggregation over the
entire contingency table, we are also interested in deviations
of single bin combinations. For this reason, we modify this
test statistic to separate a single bin from the rest of the data.

IntXY (i, j) = pi j · log
(

pi j

pi p j

)
+(1− pi j) · log

(
1− pi j

1− pi p j

)
(2)

When derived from small samples (< 10 samples per bivari-
ate bin), the values are ignored due to statistical unreliability.
The measure Int is stored for each pair of attributes and bins
in a matrix and additionally, in a graph-based data structure
to simplify the retrieval of bin relations. Both data structures
are direct sources for all views of the system (C4).

The second method is based on the observation that re-
searchers sometimes do statistical testing in "batch-mode".
Multivariate data offers multiple ways to create hypothe-
ses, and foraging through hypotheses is difficult. The sig-
nificance score (or p-value) is a common means to judge
whether a hypothesis should be discarded. The p-value is
not a measure; it does not allow to compare relations. How-
ever, scientists are typically more familiar with the p-value
than with dependency scores. Hence, we choose to calculate
this measure for all attributes and bins and use it as a filter.
The statistic for the calculation of the p-value is Pearson’s
Chi-Square-Statistic, N denotes the size of the data:

χ
2 = N ·

m

∑
i=1

n

∑
j=1

(pi j − pi p j)2

p j p j
(3)

It has been shown that this statistic is proportional to the mu-
tual information [Mor02]. If the independency assumption
holds, this statistic follows a χ

2 distribution with (m−1)(n−
1) degrees of freedom. This resulting p-value is evaluated
against the predefined score for the actual filtering. Like the
mutual information, the p-value can be applied to the devia-
tion of individual bins.

3.3. Clustering Bin Relations

We provide three different clustering techniques to support
scientists in the identification of complex subspace struc-
tures (C6). These multivariate bin groupings are calculated
on the basis of interesting bin relations above the filter status.
The subspaces revealed by the clustering techniques may
overlap since every bin can be assigned to multiple clus-
ters. These bins may reveal indirect relationships between
different subspaces (see e.g. Figure 4). We provide cluster-
ing techniques for both the detection of expected relations as
well as the discovery of new relations, described as follows.

Bin Clustering provides information about interesting re-
lations of single bins and is valuable for scientists to test hy-
potheses against a specific data subspace. For a targeted bin,
the multivariate subspace is revealed based on interesting re-
lations. Furthermore, multiple bins can be clustered at the
same time. If two of the targeted bins have a direct relation,
however, a single subspace structure is calculated.

Attribute Clustering supports scientists to focus on one
or more target attributes. The algorithm identifies all sub-
spaces in the data set which contain at least one bin of every
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Figure 2: Glyph layout of bins and attributes. Left, center:
levels of detail. Right: cluster color indication.

targeted attribute. Indirect relations between revealed sub-
spaces can be identified by bins with multi-cluster assign-
ment. As shown in the second case study, the selection of
multiple attributes is an efficient means to reveal multivari-
ate bin relations of a specific attribute focus (see Figure 9).

Exploratory Clustering emphasizes the most interesting
bin relations and thus helps to gain an overview. Instead of
focusing on a target variable, exploratory clustering takes
all interesting bin relations into account (see Figure 1). Sci-
entists are therefore able to quickly derive most apparent
hypotheses at a glance. For this purpose, we use hierar-
chical, agglomerative clustering of bins with a user-defined
aggregation level. Supported merge criteria include single-,
median-, average-, and complete-linkage [Han05].

4. Visual Design

Our system is structured in three linked views (see Fig-
ures 1,8, and 9). The matrix on the left enables the analysis
on the attribute-level (Section 4.2), the node-link diagram at
the center focuses on the analysis of bins (Section 4.3), and
on the right, we support visual cluster analysis (Section 4.4).
A glyph design represents bins and attributes in all views
(Section 4.1). All views are sensitive to an Interestingness
Filter control at the top of the system, which enables to re-
move bin relations below an interestingness threshold. Thus,
scientists can steer the number of shown bin relations (C5).

4.1. A Glyph for Attributes and Bins

We carried out a glyph design for the visual representation
of bins and associated attributes (C2). The chosen barchart
metaphor shows the distribution of a binned attribute (see
Figure 2). When the glyph is applied to represent a single
bin rather than an attribute at a glance, the respective bin is
highlighted. The glyph supports the following interactions:

• Filtering single bins, e.g., if a bin is not interesting (C5).
• Merging bins. For categorical attributes and neighboring

bins of numerical attributes.
• Splitting bins. For bins with more than one distinct value.
• Reordering of bins for categorical attributes. Due to expert

knowledge or information gain (cf. [JJJ08]).
• (Multi-)selection of bins to trigger bin clustering (C6).

We use the glyph metaphor to link all views whenever
attribute and bin information is visually encoded (C1, C4).
The visual encodings and interactions of the glyph are op-
timized with respect to the results of a formative laboratory
design study with 14 non-experts. Most of the participants

Figure 3: Question in a formative user study: ‘I am a multi-
colored object’. The shown variants of the bin glyph reflect
the design process of the multi-cluster color assignment.

were conducted several times within the development pro-
cess to leave iterative feedback. In earlier phases, we iden-
tified problems of the participants to make use of the glyph,
due to the visual complexity. Thus, the most decisive result
of the study was to keep the visual encodings as simple as
possible, with the option of interactive adaption. The bar-
chart metaphor was chosen horizontally, accompanied by an
attribute and a bin label. Different coloring concepts (one
color per attribute, one color per bin) were withdrawn due
to the cause of confusion. In the end, we use color explicitly
for linking clusters (see Section 4.5). Different glyph outline
techniques were compared. The final representation keeps
the glyph compact and supports cluster color encoding. Con-
cepts for indicating an additional interestingness score per
bin were set to optional. According to the provided cluster-
ing techniques, multiple cluster assignments are possible at
the same time. The design choice for assigning multiple col-
ors to a single bin was also part of the user study (see Fig-
ure 3). At the left, two insufficient variants are shown. The
concept of outlines with different sizes caused unintended
ranking indication, while the second variant caused more
distractions. Moreover, both variants lack color orientation.
Finally, we implemented the third design conceptk, which
resolves all described drawbacks.

4.2. Attribute View

The Attribute View enables the analysis of two-dimensional
bin relations on both the attribute-level and the bin-level (C1,
C2). The supported analysis tasks are as follows:

• Overview: getting an overview of attributes and bins (C4).
• Comparison: view and compare bin relations (C4).
• Drill-down: reducing the complexity by filtering (C5).

A matrix-based visualization represents pairwise bin rela-
tions at a glance (C4) (see Figure 6). The quadratic layout
supports the visualization of asymmetric relations. The ma-
trix is structured in major divisions corresponding to the at-
tributes. Furthermore, minor divisions represent the bins of
each attribute, using the glyph as described in Section 4.1,
including all interactive capabilities. The ordering of at-
tributes is provided by means of interestingness-based rank-
ings. Depending on the analysis goals and the data character-
istics, scientists can switch between different presets (means,
median, and maximum scores). Cells of the matrix repre-
sent the interestingness value between two particular bins.
All pairwise relations above the threshold of the interesting-
ness filter are mapped to the alpha value (dark cells represent
highest interestingness). The Attribute View enables to filter
attributes as a whole (C5). Filtered attributes (and bins) are
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Figure 4: Bin clustering of the titanic data set. The target
bins ‘Class=3’ (red) and ‘Survived=true’ (blue) reveal sep-
arated clusters, except of the children‘s bin ‘AGE [0-20.5]’.

visually represented in the corresponding filter panels (see
Figure 6, bottom) and can be re-included on demand.

4.3. Bin View

The Bin View at the center of the system enables scientists
to analyze multivariate bin relations (see e.g. Figure 4). Posi-
tion information is used for each bin to identify related bins
as neighbors in a topology-preserving layout, visually rep-
resented as a node-link diagram. Again, we use the glyph
presented in Section 4.1 to visually represent single bins.
As a result, the Bin View shows bin relations regardless of
a definition on the bin-level or on the attribute-level. The
presented topology of the bins reveals the structure of sub-
spaces by means of an ordered, abstract visual representation
(C6). Just as well, indirect bin relations can be uncovered, as
shown in Figure 4. The Bin View complements the Matrix
View, showing the same data through a different perspective
and with respect to different analysis tasks [GFC04]:

• Overview: all available bins are aligned with respect to a
generated topology (C4).

• Lookup and comparison: entities in different views can be
re-identified and cluster structures can be compared (C4).
• Visual filter support: using the interestingness filter, bins

without interesting relations can be removed (C5).
• Bin Clustering: (multi-)selection of bins reveals cluster

structures based on bin clustering (C6).

By interpreting the interestingness measures as similari-
ties between bins, we are able to use a standard projection
technique (such as MDS) to obtain default coordinates for
each bin in 2D. A layout based on repulsion forces reduces
local overlap of neighboring bin glyphs, respectively. The
Bin View provides an interactive legend for the individu-
alization of the bin glyphs and the node-link structure on
demand. In the title Figure 1, the visual representation of
edges (interestingness of bin relations) is activated. Similar
to the Attribute View, the Bin View enables the comparison
of different entities (here: bins and bin clusters), linking en-
tities interactively (by hovering), and the reduction of visual
complexity by drill-down interaction (right-click for filtering
bins). The Bin View is sensitive to the global interestingness
filter. The selection of bins triggers the bin clustering algo-
rithm, which is described in the subsequent section in detail.

Figure 5: Some multivariate bin relations are less interest-
ing. We remove two subspaces with jointly occurring missing
values of genetical (red) and clinical attributes (purple).

4.4. Interactive Clustering of Multivariate Bin Relations

Up to this point, the described interactions focus on the re-
duction of the number of displayed attributes, bins and bin
relations. However, we also enable scientists to addition-
ally highlight subsets of bins using our clustering techniques
(C6). Depending on the information seeking behavior, three
different techniques (see Section 3.3) can be applied:

• by (multi-)selection of bins.
• by (multi-)selection of attributes.
• by operating the exploratory cluster slider in the upper

right of the system.

No matter which of the clustering technique is applied, the
cluster result is not limited to bivariate bin relations. Instead,
the resulting data subspaces can be based on multivariate bin
relations. We want to mind the fuzzy nature of the cluster-
ing techniques. A single bin may belong to multiple clus-
tered subspaces. A compactified overview of each cluster is
displayed in the list-based Cluster View (see Figure 7). In
this way, scientists can further analyze the clustering results.
Moreover, the view can be applied as a means of result com-
munication, e.g., for a scientific publication. The visualiza-
tion of a single cluster consists of four elements that describe
the multivariate bin relation in detail, a) the label of the at-
tribute, b) the label of the bin, c) the glyph of the bin, and d)
a diagonal matrix to represent the internal cluster relations.
The line-based linking between the bin labels and the matrix
is inspired by the NodeTrix visualization [HFM07]. The bin
glyph enables a quick allocation of bins within the domain
of each attribute. Hence, scientists are able to read clustering
results such as ‘the first class relates to the oldest passengers,
with expensive fares’. The absolute and the relative size of
the subspace are shown. As a default, we calculate the size of
a subspace by the join of pairwise bin cut sets. For a further
analysis of the subset in detail, a tabular view can be opened.
The respective icon is located at the upper right. Finally, to
support the export of findings, subspaces can be stored in a
separate file by clicking the disc icon.

4.5. Using Color for Linking Clusters

We use the visual variable color explicitly for linking clus-
ter results in the three provided views. In this manner, we
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-
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contains bins of 5 attributes

Figure 6: Matrix View showing 7 weather-related attributes
in Antarctica. Different non-linear correlations can be seen.
Horizontal Width and Cloud Height are selected, revealed
subspace clusters are highlighted with color-coding.

combine the individual advantages of each view to facili-
tate reasoning about the clustered subspace structures (C6).
The choice of colors needs to discriminate dissimilar clus-
ters, and simultaneously to indicate similar (and possibly in-
tersecting) clusters. For this purpose, we apply the results
of the topology-preserving bin projection algorithm (see the
Bin View 4.3) and map the 2D coordinates to a 2D colormap.
With the chosen RGB 2D colormap, we aim to exploit large
parts of the available color space [BRS∗12a]. Nonetheless,
adapting the applied color map based on user preference or
semantic application context is easily possible [BvLBS11].

5. Case Study

We report the results of two real-world scenarios with re-
search data from the meteorological and the medical domain.
Scientists confirmed that we were able to detect important
expected relations in both scenarios. Moreover, we were able
to communicate interesting relations that were unexpected.

5.1. Meteorological Synoptical Observations

In this study, we explore multivariate weather phenomena
in Antarctica. Since March 1981, a meteorological observa-
tory program has been carried out at Neumayer Station (NM)
(70◦37‘S, 8◦22‘W), located in Antarctica. NM is an integral
part of many international networks, organized e.g., by the
World Meteorological Organization (WMO). The data helps
to close gaps in the global weather and climate observing
networks. Our contacted domain expert is Dr. Gert König-
Langlo, scientific leader of the meteorological observatory
of Neumayer. The provided mixed data set consists of 26 at-
tributes with measurements every three hours for 30 years
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Figure 7: Cluster List View. Matrices show internal clus-
ter relations. Depending on the cluster mode, not every cell
needs to have a relation above the interestingness value. Two
weather phenomena in Antarctica are shown.

(92902 time stamps) [RLKLI12]. We remove columns and
lines of the data set with too many missing values. Next, we
re-name some of the attributes and bins due to a domain-
specific encoding. For the exploration of temporal relations,
we integrate binnings for Year, Month, Season, Weekday, and
Hour of Day. We apply frequency-preserving binning for nu-
merical attributes as a default, and population-based binning
for Air Temp[C] and Wind Speed. The mutual information
measure is chosen as the interestingness measure.

The number of 150 bins at startup reveals the limits of
the visual scalability of the system. Based on the attribute
ranking in the Attribute View, we first remove less interest-
ing attributes. Likewise, bins representing missing values are
removed. We take advantage of the additional display space
and sort the bins of categorical attributes (see Horiz.Vis and
Cloud Height in Figure 6). For further information drill-
down, we raise the interestingness filter to the 66% posi-
tion. We identify a variety of correlations in the Attribute
View. Some of these show periodic, non-linear behavior (see
Month in Figure 6). Based on the gained overview, we next
apply the exploratory clustering technique. The most inter-
esting relations in the data set are presented. We obtain mul-
tivariate subspaces containing popular weather phenomena,
verified by Mr. König-Langlo. For a further investigation, we
select the observed attributes Wind Speed, Snow Drift, Influ-
ence (wind direction), Horizontal Visibility, Cloud Height,
and Cloud Amount as the basis for attribute clustering. Fig-
ure 7 illustrates the two resulting subspace clusters in de-
tail. The blue subspace consists of bins with low horizon-
tal visibility, low cloud height, high wind speeds, obscured
sky conditions, synoptic weather influence (wind coming
from the east), and blowing snow drifts. The domain ex-
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Figure 8: Exploration of undiscovered relations. The bin Fog=Yes occurs in winter (green) and in summer (orange). While in
the winter period katabatic winds are observed, foggy weather in summer is not significantly influenced by maritime winds.

perts points out that we have just identified one of the most
prominent weather situations at NM, a bad weather situa-
tion that usually occurs in the winter period. In contrary,
the orange cluster contains low wind speeds, vast horizon-
tal sights, and katabatic winds (coming from the south) in-
dicate fine weather, which mainly occurs in summer. The
scientist was pleased to recommend page 30 of one of his
publications where our explored weather conditions are al-
ready published [KLL07]. Even though we are no experts,
we were still able to discover unknown relations (from our
point of view), and thus to independently validate previously
published findings.

For the discovery of something unexpected, Mr. König-
Langlo suggests to focus on foggy weather situations in sum-
mer and winter in combination with wind influences, which
are not yet fully understood in the scientific community. We
apply bin clustering and define Fog=Yes, Season=Summer,
and Season=Winter as target bins. The results are shown
in Figure 8. The Fog=Yes bin is connected to both a Sum-
mer cluster (orange) and a Winter cluster (green). It can be
seen in the Bin View that the green cluster contains more
bins and is more compact in contrast to the orange clus-
ter. Just as well, the position of the Fog=Yes bin indicates
a strong relation to the green cluster. The scientists explains
that the ‘green’ fog behavior in winter may be influenced
by the continental climate of the inner Antarctica, repre-
sented by katabatic winds, (so-called radiation fog). Fortu-
nately, the Cluster List View at the right lists katabatic influ-
ence in the green cluster. An additionally calculated p-value
analysis reveals a probability for a statistical dependency be-
tween Influence=katabatic and Fog=Yes of 99.9%. We can
validate that foggy weather in winter is influenced by kata-
batic winds; a new discovery. However, in summer things
look different. The scientist explains that in summer the open
sea is very close to NM since most of the sea ice has melted.
Thus, wet air coming from the near sea may support foggy
weather, which the researchers call advection fog. However,
the maritime influence appears to be weak. The bin is not
contained in the orange cluster. From a scientific perspec-
tive, we suggest to withdraw the hypothesis of the maritime
influence to foggy weather.

5.2. Prostate Cancer Research

In prostate cancer research, much effort is spent in the dis-
covery of prognostic features, which predict biological can-
cer events or medical treatment success. Hence, research
in the medical domain performs a lot of multivariate data
analysis. The limited number of clinical treatment attributes
makes the discovery of new findings difficult, unless e.g.,
genomic attributes are additionally involved. However, only
few scientific labs are able to perform the analysis of both
sources at large data scale. The Martiniklinik Hamburg Ep-
pendorf (UKE) has one of the largest (anonymized) data
bases with both: attributes of clinical treatment and genomic
indicators. Our contacted domain experts Prof. Dr. Thorsten
Schlomm and Dr. Pierre Tennstedt are interested in ‘associa-
tions’ of genomic deletions (indicators) to clinical attributes
in order to improve patient treatment. On our obtained data
set, we first apply prepreocessing steps to re-name attributes
and clean categorical data. Moreover, we bin some numer-
ical attributes with respect to definitions given by the sci-
entific community. Based on inquiry, we choose frequency-
preserving binning for numerical attributes and χ

2 with the
inverted p-value statistics to measure interestingness. We be-
gin with 13571 anonymized patients containing 41 mixed
attributes. With 160 bins, we again reach the limits of vi-
sual scalability. The Attribute View helps to drill-down the
number of attributes. We remove attributes with expected,
and thus less interesting relations (from the doctor‘s point
of view). An example is shown in Figure 5, where two clus-
ters of missing values were identified and removed. Appar-
ently, missing values of different attributes seem to occur
frequently for identical patients. Next, we apply exploratory
clustering in order to reveal the most interesting subspaces.
We detect that pathology results of prostate cancer surgery
highly indicate patient well-being in the post-surgery phase
(see e.g. [WCK∗09]). The biological recurrence (BCR) is
one of the strongest indicators for patient well-being. Among
others, we detect expected relations to the size of the tu-
mor, the Gleason score, and the PSA-value. Finally, we aim
to discover ‘associations’ between genomic deletions (muta-
tions based on missing parts of a chromosome or a sequence
of DNA) and clinical attributes. The domain experts point
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Figure 9: Attribute clustering of the prostate cancer data set. We discovered an association of the genomic ‘deletion’ ERG_IHC
attribute to bins of the OP_AGE attibute. The finding will be published in the prostate cancer research community soon.

out that prostate cancer early-treatment can benefit substan-
tially from new associations. One candidate is the ERG_IHC
transcription factor, which we chose for attribute cluster-
ing. It can be seen in Figure 9 that the two expression bins
yes (orange cluster) and no (blue cluster) have a relation to
bins of the OP_Age attribute (the p-value for the associa-
tions is <0.001). This finding was completely new to the do-
main experts. A second discovery is a multivariate relation
of ERG_IHC to other deletions (PTEN, MAP3K7, FOXP1,
CHD1, and WWOX in particular). With this finding, we sup-
ported the discovery of ‘additional effects’ among deletions,
which will be a vast research area in future. We are happy
about the discovery of two findings, which both will be pub-
lished in the prostate cancer research community soon.

6. Summary and Conclusion

We presented techniques for the identification of interesting
bin relations in large mixed research data sets. Three com-
plementary visual components provide different views onto
the data, linked together in an interactive system. The in-
terestingness of bin relations calculated with the Pearson‘s
χ

2 test or the Mutual Information measure enables scien-
tists to directly apply discovered findings as the basis for
domain-specific research. From an analytical point of view,
our system supports both, to derive and to validate hypothe-
ses. Based on the three linked views our system enables sci-
entists to get an overview of large mixed data sets. More-
over, interactive drill-down capability is provided by means
of filtering and attribute individualization. Finally, different
clustering techniques support scientists in revealing most in-
teresting and potentially multivariate relations hidden in the
data. The visual appearance of the system was also targeted
towards supporting scientists in the communication of anal-
ysis results visually. Two case studies were conducted to
prove the applicability of the system for research tasks in
practice.

A possible limitation of the approach is the dependency
on the pre-calculated binning results. Generally speaking, it
would be beneficial to study the dependency of different bin-
ning results on the interestingness calculation results. An-
other issue is the genericity of the interestingness measures.
Indeed, we enable the scientist to find relations, but the re-
lations are unspecific and need the interpretation of experts,
e.g., to deduce a linear correlation. The latter limitation is
associated to a possible extension of the system: the interac-
tive definition of estimators for the χ

2 test for assumptions
about the data. Eventually, the visual scalability of the ap-
proach is limited to about 30 attributes, or 150 bins, respec-
tively. Based on the findings in the use cases, we aim to prove
to which extent the presented topology of bins in the Bin
View can be generalized as a means for scientific reasoning.
While proven meaningful in this approach, the application
of 2D colormap concepts for depicting similarity can further
be taken into account. Perceptional linearity is only one of
the interesting objectives of a possible study.
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