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Prelude: CFA software

@ LISREL (http://www.ssicentral.com/)

@ Originally designed as stand-alone program with matrix syntax
@ LISREL 8.5+ for Windows/Mac: Includes

@ interactive, menu-driven version;

@ PRELIS (pre-processing, correlations and models for categorical variables);
@ SIMPLIS (simplified, linear equation syntax)
@ path diagrams from the fitted model
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Prelude: CFA software Prelude: CFA software
@ EQS (http://www.mvsoft.com/): Uses linear equation syntax
@ Amos (http://www.spss.com/amos/): Linear equation syntax + path o spreadsheet data editor; cut/paste from other apps
diagram model description @ now has Diagrammer & la Amos .
o import data from SPSS, Excel, etc: works well with SPSS @ polyserial and polychoric correlations for categorical data
° Create the mOdeI by draWIng a path dlagram =Fi‘le Edit Layout View BuildEEQQSS'm::isr:ud;ws\ﬁsl.il;duw Font Help —
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ranRdot macro: path diagram from PROC CALIS RAM data set

Prelude: CFA software Prelude: Path diagrams
@ Visual representation of a set of simultaneous equations for EFA, CFA,
SEM models
@ SAS: PROC CALIS rectangulgr or square box signifies an observed
o MATRIX (ala LISREL), LINEQS (a la EQS), RAM, ... syntax - exipanifiatvhtisble
@ Does not handle multi-sample analyses
circle or ellipse signifies an unobserved
@ SAS macros htt p: // www. mat h. yor ku. ca/ SCS/ sasnmac/ : @ or latent variable
o cal i sgfi macro: more readable display of PROC CALIS fit statistics A unenclosed variable signifies a disturbance term
. . . N (error in either equation or measurement)
@ cal i scnp macro: compare modgl fits from PROC CALIS ala Amos ° b st MIaHES sy i thet varisble
@ csnpower macro: power estimation for covariance structure models at base of arrow “causes” variable at head of arrow
o
)

@ path diagrams using gr aphvi z

two straight single-headed arrows connecting
two variables signifies feedback relation
or reciprocal causation

eqs2r ammacro: translate linear equations to RAM data set
-headed ignifi alyzed
@ R: sempackage (John Fox): uses RAM model syntax N




Prelude: Path diagrams

Examples:
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CFA, 1-factor model SEM, two latent variables

Indeterminacy of the Common Factor Model

@ The general Factor Analysis model allows the factors to be correlated.
Let ®, . be the variance-covariance matrix of the common factors. Then
the model is

S=A®AT+ T (6)

@ However, model (6) is not identified , since it has more parameters than
there are correlations (or variances and covariances).

@ That is, any rotation of A by a non-singular transformation matrix, Ty »k
will fit equally well:

F(A,®) =F(AT, T '&T )

@ The transformation matrix, T k) corresponds to the fact that k?
restrictions need to be imposed in @ and/or A to obtain a unique solution.

@ Setting ® = | (uncorrelated factors) gives k(k + 1)/2 restrictions; all
methods of estimating factor impose an additional k(k — 1)/2 restrictions
on A.

Indeterminacy of the Common Factor Model

Indeterminacy of the Com

mon Factor Model

@ Therefore, the number of effective unknown parameters is:

A L]

i

~~
pk +k(k +1)/2+

T

=pk +p—k(k—1)/2

so the number of degrees of freedom for the model is:
Sample moments (S) p(p+1)/2

- Parameters estimated pk +

p—k(k —1)/2

= Degrees of freedom  [(p — k)* — (p + k)]/2
@ E.g., with p = 6 tests, k = 3 factors will always fit perfectly

k]
df

1 2 3

EREGE

Restricted maximum likelihood FA

Restricted Maximum Likelihood FA

The essential ideas of CFA can be introduced most simply as follows:
@ Joreskog (1969) proposed that a factor hypothesis could be tested by
imposing restrictions on the factor model, in the form of fixed elements in
A and ¢ (usually 0).
® The maximum likelihood solution is then found for the remaining free
parameters in A and .

@ The y? for the restricted solution provides a test of how well the
hypothesized factor structure fits.




Restricted Maximum Likelihood FA Restricted vs. Unrestricted solutions

For example, the pattern below specifies two non-overlapping oblique factors,
where the X’s are the only free parameters.

X 0 Unrestricted solution Factor solutions with m = k? restrictions are
X mathematically equivalent:
A | X 0O & — [ 1 ] @ same communalities,
0 x x 1 @ same goodness of fit y2.
8 i @ Any unrestricted solution can be rotated to any other.

Restricted solution Solutions with m > k2 restrictions
@ have different communalities,
@ do not reflect the same common factor space, and
@ cannot be rotated to one another.

@ A k = 2-factor EFA model would have all parameters free and
df =15 — 11 = 4 degrees of freedom.

@ This model has only 7 free parameters and df = 15 -7 = 8.

@ If this restricted model fits (has a small x?/df), it is strong evidence for
two non-overlapping oblique factors.

Restricted maximum likelihood FA Example: Ability and Aspiration Restricted maximum likelihood FA Example: Ability and Aspiration

Example: Ability and Aspiration

Calsyn & Kenny (1971) studied the relation of perceived ability and The correlation matrix is shown below:

. S . . ) S-C Par Tch Frnd Educ Col
educational aspiration in 556 white eigth-grade students. Their measures S-C Abi | 1. 00
were: Par Eval 0.73 1.00
Tcthva: 0.70 0. 68 1.00
. ot FrndEva 0.58 0.61 0. 57 1. 00
x1: self-concept of ability Educ Asp 0.46 043  0.40 0.37  1.00
Xo: perceived parental evaluation Col Plan 0.56 0.52 0. 48 0.41 0.72 1.00
x3: perceived teacher evaluation x1 X2 x3 x4 X5 x6
X4: perceived friend’s evaluation The model to be tested is that
xs: educational aspiration @ X1-X4 measure only the latent “ability” factor and
Xe: college plans e
@ X5-Xg Mmeasure only the “aspiration” factor.
Their interest was primarily in estimating the correlation between “true @ If so, are the two factors correlated?

(perceived) ability” and “true apsiration”. There is also interest in determining
which is the most reliable indicator of each latent variable.




Restricted maximum likelihood FA Example: Ability and Aspiration

Restricted maximum likelihood FA Example: Ability and Aspiration

Specifying the model Specifying the model
The model can be shown as a path diagram:
Self This can be cast as the restricted factor analysis model:
Xl je— 2z1 ) ) ) ) ) _
X1 )\]_1 0 Z;
Parent X2 A1 O Z3
X2 |jfe—+ 272 X3 | _ Az1 O [51]+ Z3
Teacher X4 /\41 0 fz Zy
X3 |e— z3 X5 0 s Zs
| X6 | | 0 ez | | Ze |
Friend . . . . .
X4 |le—on " 74 If this model fits, the questions of interest can be answered in terms of the
estimated parameters of the model:
X5 Educ Asp 5 @ Correlation of latent variables: The estimated value of ¢1, = r(&1,&2).
Asmirat @ Reliabilities of indicators: The communality, e.g., h? = A3 is the estimated
spiration Col Plan reliability of each measure.
X6 je— 26
Using PROC CALIS
The solution (found with LISREL and PROC CALI S) has an acceptable fit:
2 _ _ dat a cal ken( TYPE=CORR) ;
X" =926 df=8 (p=0321) CTYPE_ = 'CORR ; input NAMVE $ V1-V6; % $
The estimated parameters are: l'abel V1='Self-concept of ability’ =
LAVBDA X Communality  Uni queness V2="Perceived parental evaluation
Ability Aspiratn V3=" Per cei ved t eacher eval uation’
S-C Abi | 0. 863 0 0. 745 0. 255 = i i i ’
Par Eval 0. 849 0 0. 721 0. 279 va= Perceived friends eval uation
Tch Eval 0. 805 0 0. 648 0. 352 V5=" Educati onal aspiration
Fr ndEval 0. 695 0 0. 483 0.517 V6="Col | ege pl ans’;
Educ Asp 0 0.775 0. 601 0. 399 dat al i nes:
Col Pl an 0 0. 929 0. 863 0. 137 !
Vi 1. :
Thus, V2 73 1. .
@ Self-Concept of Ability is the most reliable measure of £;, and College V3 .70 .68 1. )
Plans is the most reliable measure of &;. V4 .58 .61 . 57 1. .
@ The correlation between the latent variables is ¢, = .67. Note that this is /5 . 46 .43 .40 .37 1. .
higher than any of the individual between-set correlations. V6 . 56 .52 .48 .41 .72 1.




Restricted maximum likelihood FA Using PROC CALIS Restricted maximum likelihood FA Using PROC CALIS

@ With the LINEQS statement, specify linear equations for the observed
variables, using F1, F2, ... for common factors and E1, E2, ... for
unique factors.

@ STD statement specifies variances of the factors

The CFA model can be specified in several ways:
@ With the FACTOR statement, specify names for the free parameters in A

(MATRIX _F ) and ®(MATRIX P)) @ COV statement specifies covariances
proc calis data=cal ken met hod=max edf =555 short nod; proc calis data=cal ken net hod=nax edf=555;
FACTOR n=2;: LI NEQS
MATRI X F_ /= | oadings */ V1l = lanl F1 + E1 ,
[ ,1] = laml-1lamd , [+ factor 1 =/ V2 = |an2 F1 + E2
[ ,2] =4« 0 lanb lanb ; /x factor 2 =/ V3 = lanB F1 + E3 |
MATRI X P V4 = |amd F1 + E4 |
o [1,1] =2 * 1., V5 = lanb F2 + E5 |,
[1,2] = COR, /= factor correlation */ V6 = lant F2 + E6 ;
run; STD
El- E6 = EPS:. ,
F1-F2 = 2 = 1. ;
Ccov
F1 F2 = COR ;
run;
Higher-order factor analysis Analysis of Covariance Structures (ACOVS)

@ In EFA & CFA, we often have a model that allows the factors to be
correlated (@ # 1)

o If there are more than a few factors, it sometimes makes sense to Joreskog (1970, 1974) proposed a generalization of the common factor model
consider a 2nd-order model, that describes the correlations among the which allows for second-order factors.
1st-order factors.

@ In EFA, this was done simply by doing another factor analysis of the T 5
estimated factor correlations & from the 1st-order analysis (after an = BI'B +6
oblique rotation)

@ The second stage of development of CFA models was to combine these
steps into a single model, and allow different hypotheses to be compared.

b))

B(A®A"T + ¥?)B" + ©2

where;

® B (pxk) = loadings of observed variables on k 1st-order factors.
I’ xk) = correlations among 1st-order factors.

@fpxp) = diagonal matrix of unique variances of 1st-order factors.

)
)
@ Akxr) = loadings of 1st-order factors on r second-order factors.
)
)

Firat-order
Factors Model 2 - Model 3 Model 4
Phys. Abil.

Appearance

® ;) = correlations among 2nd-order factors.
Peers P2 = diagonal matrix of unique variances of 2nd-order factors.
Parants

Reading

Mathematics (e

Gen. Srhool




Higher-order factor analysis: ACOVS model Higher-order factor analysis: ACOVS model

Analysis of Covariance Structures (ACOVS)

In applications of ACOVS, any parametersin B, A, ®, ¥, or ® may be

@ free to be estimated,
@ fixed constants by hypothesis, or
@ constrained to be equal to other parameters.

The maximum likelihood solution minimizes:
F(B,A,®,¥,0)=tr(SE!) +log|S| — log |S| — p

with respect to the independent free parameters. At the minimum,

(N — 1)Fmin ~ x? with degrees of freedom = p(p + 1)/2 - (number of free
parameters in model).

Example: 2nd Order Analysis of Self-Concept Scales

A theoretical model of self-concept by Shavelson & Bolus (1976) describes
facets of an individual's self-concept and presents a hierarchical model of how
those facets are arranged.
To test this theory, Marsh & Hocevar (1985) analyzed measures of
self-concept obtained from 251 fifth grade children with a Self-Description
Questionnaire (SDQ). 28 subscales (consisting of two items each) of the SDQ
were determined to tap four non-academic and three academic facets of
self-concept:

@ physical ability

@ physical appearance

@ relations with peers

@ relations with parents

@ reading

@ mathematics

@ general school

Higher-order factor analysis: ACOVS model

Example: 2nd Order Analysis of Self-Concept Scales

The subscales of the SDQ were determined by a first-order exploratory factor
analysis. A second-order analysis was carried out examining the correlations
among the first-order factors to examine predictions from the Shavelson
model(s).

‘:l‘r:‘l;?;dor Model2 - Model 3 Model 4 Modgl 5 Model 6
Phys. Abil.
Appearance
Peers
Parents
Reading

Mathematics

Gen. Srhool

Figure 1. Higher order faz*ar structures for Models 210 6.

LISREL model: CFA and SEM

LISREL/SEM Model

@ Joreskog (1973) further generalized the ACOVS model to include
structural equation models along with CFA.

@ Two parts:

Measurement model - How the latent variables are measured in terms of
the observed variables; measurement properties (reliability,
validity) of observed variables. [Traditional factor analysis
models]

Structural equation model - Specifies causal relations among observed
and latent variables.

@ Endogenous variables - determined within the model (ys)
@ Exogenous variables - determined outside the model (xs)

Structural eqgn. for latent

variables n=Bn+T{+¢

Measurement models
for observed variables

A& +6




LISREL/SEM Model LISREL/SEM Model

Measurement sub-models for x and y

Measurement (CFA) model for

Math self-concept Measurement (CFA) model

for Math achievement

SEM model for measures of math self-concept and math achievement:

erri SDQMS(
MATHGR errd
\THAC
e, PPCMS o)

Structural model, relating £ to n

Structural model

LISREL model: CFA and SEM

LISREL model: CFA and SEM

LISREL submodels
@ NX = # of observed eXdogenous x variables
@ NY = # of observed endogenous y variables
@ NKsi = # of latent eXdogenous ¢ variables

@ NEta = # of latent endogenous 7 variables @ Factor analysis model  [NX,NK >0,NY = NE = 0]
@ Structural equations, GLM  [NY,NX > 0,NK = NE = 0] X = AL+6

Path analysis, structural equation causal model for directly observed

variables. Ordinary regression models and GLM are the special case: @ Second-order factor analysis model  [NY, NE,NK > 0]

B=0=y=Ix+¢ n = T&+¢
y = Ayn+te
yl ‘—;l
Xq /
Y; [&—¢,

E




LISREL model: CFA and SEM LISREL model: CFA and SEM

Using LISREL: Ability & Aspiration

LI SREL1: Ability & Aspiration in 8th grade students

I NOBS gives # of observations on which the correlation natrix is based.

I MATRI X=KMatrix --> a correlation matrix is to be anal yzed.
DAt a NI nput var s=6 NOBS=556 MATRI X=KMATRI X
LAbel s

S C Abil Par_Eval Tch_Eval FrndEval Educ_Asp Col Pl an
KMWat ri x

1.0
.73 1.0
.70 .68 1.0

.58 .61 .57 1.0
.46 .43 .40 .37 1.0
.56 .52 .48 .41 .72 1.0
I MODEL NKSI=2 --> specified two ksi variables (factors)

! PHI =STANDARDI ZED st andardi zes the factors to O nean and vari ance 1.

Model NX=6 NKSI =2 PHI =STANDARDI ZED

@ Each statement begins with a keyword (or 2-letter abbreviation)
@ MOdel statement specifies NX, NY, NKsi, NEta & and matrix forms
(symmetric, standardized, etc.)

Using LISREL: Ability & Aspiration

I LKSI specifies nanes for the factors.
LKsi
"Ability Aspiratn’
I PATTERN LX specifies the |anbda-x (factor |oading) paraneters
! to be estimated: O indicates a 0 loading; 1 a paranmeter to
! be esti mat ed.
PAttern LX
1

COoORREE
PR OOOO

I The FREE LX lines specify exactly the sane things; either way will do.
FRee LX(1 1) LX(2 1) LX(3 1) LX(4 1)

FRee LX(5 2) LX(6 2)

PDi agr am

I OQUTPUT: SE requests standard errors; Mndices: "nodification indices."
QUt put SE TVal ues VA M ndices FS TO

@ PAttern LX or FRee specify free and fixed parameters
@ PDiagram: path diagram
@ OUtput: specifies output options

LISREL model: CFA and SEM Testing equivalence of measures with CFA

Testing Equivalence of Measures with CFA

Test theory is concerned with ideas of reliability, validity and equivalence of
measures.

@ The same ideas apply to other constructs (e.g., anxiety scales or
experimental measures of conservation).
@ Test theory defines several degrees of “equivalence”.

@ Each kind may be specified as a confirmatory factor model with a single
common factor.

f1 0F ,
6
B= | Zl0m s omoale| 7
Ba 0%

LISREL model: CFA and SEM Testing equivalence of measures with CFA

Testing Equivalence of Measures with CFA

One-factor model:

b1 07 )
0
B= |l la s om oale] 7,
Da 05

Path diagram:

5 —fi




LISREL model: CFA and SEM Testing equivalence of measures with CFA LISREL model: CFA and SEM Several Sets of Congeneric Tests

Several Sets of Congeneric Tests

Kinds of equivalence

@ Parallel tests : Measure the same thing with equal precision. The

! For several sets of measures, the test theory ideas of congeneric tests can be
strongest form of “equivalence”.

extended to test the equivalence of each set.

@ Tau-equivalent tests : Have equal true score variances (5%), but may If each set is congeneric, the estimated correlations among the latent factors
differ in error variance (6?). Like parallel tests, this requires tests of the measure the strength of relations among the underlying “true scores”.
same length & time limits. E.g., short forms cannot be r-equivalent. Example: Correcting for Unreliability

] C_ongenerlc tests : The weakest fqrm of eqU|vaIence: All tests measure a @ Given two measures, x and y, the correlation between them is limited by
single common factor, but the loadings & error variances may vary. the reliability of each

These hypotheses may be tested with ACOVS/ %ISREL by testing equality of @ CFA can be used to estimate the correlation between the true scores, 7y,
the factor loadings (5} and unique variances (97). Ty, Or to test the hypothesis that the true scores are perfectly correlated:

- equivalent o Ho : p(mx,7y) =1
Pr=P02=03=p 07 =05 =05=10
- Z 2 u S @ The estimated true-score correlation, p(7x, 7y ) is called the “correlation of
Parallel X,y corrected for attenuation.”
Several Sets of Congeneric Tests Several Sets of Congeneric Tests

The analysis requires two parallel forms of each test, X1, X2, y1,Y2. Tests are
carried out with the model:

Xy 8 0 e Hypotheses
Xo 8 0 - e, The following hypotheses can be tested. The difference in x? for Hy vs. H,, or
— X _ . . o
vi |10 s [ 7 } + e | = AT+ e Hs vs. Hy provides a test of the hypothesis that p = 1.
Y2 0 04 €4 Hi : p=121landH,
. . . . . _ 2 _ p2
with corr () = p, and var (e) = diag(6f, 63, 3, 67). The model is shown in this Hy - { gl - 22 Z% - Z%
path diagram: 3=P4 Uz =04
Hs : p =1, all other parameters free
e, — X, B| 33 i € H, : all parameters free
7 P 5 H; and H, assume the measures X1, X2 and y1, Y, are parallel. Hz and Hy
B> Ba assume they are merely congeneric.
62—"‘ X2 }'2 [ 64




LISREL model: CFA and SEM Several Sets of Congeneric Tests LISREL model: CFA and SEM Example: Lord’s data

Several Sets of Congeneric Tests

These four hypotheses actually form a 2 x 2 factorial (parallel vs. congeneric:
Hy and H, vs. Hz and Hy and p = 1 vs. p # 1.
For nested models, model comparisons can be done by testing the difference

Example: Lord’s data

Lord’s vocabulary test data:
@ X1, Xo: two 15-item tests, liberal time limits
@ Vy1,Y2: two 75-item tests, highly speeded
Analyses of these data give the following results:

in x2, or by comparing other fit statistics (AIC, BIC, RMSEA, etc.)

@ LISREL can fit multiple models, but you have to do the model comparison Hypothesis Parz::eeters df 2 p-value AlC
tests “by hand” Hi:par, p=1 4 6 37.33 0.00 | 25.34
@ AMOS can fit multiple models, and does the model comparisons for you. Ha: par 5 5 193 0.86 | -8.07
@ With PROC CALIS, the CALISCMP macro provides a flexible summary of Hs: cong, p=1 8 2 3621 0.00 | 32.27
multiple-model comparisons. Ha4: cong 9 1 070 0.70 | -1.30

@ Models H2 and H4 are acceptable, by x? tests
@ Model H2 is “best” by AIC

LISREL model: CFA and SEM Example: Lord's data LISREL model: CFA and SEM Example: Lord'’s data

Lord’s data Lord’s data: PROC CALIS
data |l ord(type=cov);
g tl Input _type_ $ _nanme_ $ x1 x2 yl y2;
_ i i i i 12 at al I nes]
The tests of p = 1 can be obtained by taking the differences in x<, N L "81g 649 649 649
. cov x1 86.3937 . . .
Parallel Congeneric cov x2 57.7751 86.2632 . .
Ca cov 33 55 880 23 2La5 333582 o7 oner
p=1]3733 63621 2 mean 0 0 0 0 0
p#1 193 5 0.70 1 ;
3540 1]3551 1 Model H4:31, 32, B3, Ba . . . p=free

title "Lord s data: unconstrai ned two-factor nodel";

proc calis data=lord

H4-
@ Both tests reject the hypothesis that p = 1,

. L cov
@ Under model H2, the ML estimate is p = 0.889. Sunmary out r ameEMA:
@ = speeded and unspeeded vocab. tests do not measure exactly the linegs X1 = betal F1 + el,
same thing. X2 = beta2 F1 + e2,
SAS example: yl = beta3 F2 + e3,
: y2 = betad F2 + e4;
www. mat h. yor ku. ca/ SCS/ Cour ses/ factor/sas/calislc. sas std F1F2 =1 1,
el e2 e3 e4 = vel ve2 ve3 ve4;
cov F1 F2 = rho;

run;




LISREL model: CFA and SEM Example: Lord’s data LISREL model: CFA and SEM Example: Lord’s data

Lord’s data: PROC CALIS Lord’s data: PROC CALIS
Model H3: H4, with p =1
The SUMMARY output contains many fit indices: title "Lord's data: H3- rho=1, one-congeneric factor";

proc calis data=lord

Lord’ s data: H4- unconstrained two-factor nodel cov sunmary outraneMB;

Covariance Structure Anal ysis: Maximum Li kel i hood Estimation i negs i% = BSE g% E% : g%z
Fit criterion . . S 0.0011 5% :ggtgz E%:gif
Goodness of Fit Index (Gzl) . 0. 9995 std F1F2 =11 '
GFI Adjusted for Degrees of Freedom (AGHI) 0.9946 el e2 e3 e4 = vel ve2 ve3 ved:
Root Mean Square Residual (RVR) . . . . S 0.2715 cov F1 F2 = 1 ‘
Chi -square = 0.7033 df =1 Prob>chi **2 = 0.4017 run: ’
Nul | ‘Model Chi -square: df = 6 1466. 5884 '
Bentler’s Conparative Fit Index . . Co 1. 0000 Model H2: 81 = B2, 83 = B4 ..., p=free
Normal Theory Reweighted LS Chi -square 0.7028 title "Lord’ s data: H2- X1 and X2 parallel, Y1 and Y2 parallel";
Akai ke’s Information Criterion . -1.2967 proc calis data=lord
Consistent Information Criterion -6.7722 Cov Sunmary outrameM;
Schwarz’ s Bayesian Criterion -5.7722 lineqs x1 = betax F1 "+ el
McDonal d’ s (1989) Centrality. . 1. 0002 X2 = petax F1 + e2.
Bentl er & Bonett’s (1980) Non- normed | ndex. 1.0012 yl = betay F2 + e3
Bentl er & Bonett’'s (1980) Nornmed | ndex. . 0. 9995 y2 = betay F2 + el
James, Miulaik, & Brett (1982) Parsi noni ous | ndex. 0. 1666 std F1 F2 = 1 1, '
T el e2 e3 e4 = vex vex vey vey,;
cov F1 F2 = rho;
run;
7 . 1 .
Lord’s data: CALISCMP macro Lord’s data: CALISCMP macro

Model comparisons using CALISCMP macro and the OUTRAM= data sets

%al i scnp(ram=ML M2 MB M4,

A L _ %al i scnp(raneEML M2 MB M4,
nodel s=%str(HL par rho=1/H2 par/H3 con rho=1/H4 con),
conpar e=1 2(/ 3p4 /1 3/ 2 4)!0 ) nodel s=%str(Hl par rho=1/H2 par/H3 con rho=1/H4 con),

del . stics f g compare=1 2/ 3 4 /1 3/ 2 4);
Model Conparison Statistics from4 RAM data sets Mbdel Conparison Statistics from4 RAM data sets

RV Mbdel Conpari son Chi Sq df p-val ue
- oh RMS - L T LT
Model Paramet ers df Chi-Square P>Chi Sq Resi dual GFl Al C HL par rH0=1 vs. 2 par 35 4092 1 0. 00000 *#*+*
Hl par rho=1 4 6 37.3412 0.00000 2.53409 0.97048  25.3412 H3 con rho=l vs. H4 con 35.5690 1 0.0000Q *xxx
H2 par 5 5 1.9320 0.85847 0.69829 0.99849  -8.0680 HL par rho=1 vs. H3 con rho=1 1.0689 4 0.89918
H3 con rho=1 8 2 36.2723 0.00000 2.43656 0.97122 32.2723 H2 par vs. H4 con 1.2287 4 0.87335
H4 con 9 1 0.7033 0.40168 0.27150 0.99946 -1.2967

(more fit statistics are compared than shown here.)




LISREL model: CFA and SEM Example: Speeded & unspeeded tests

Example: Speeded and Non-speeded tests

If the measures are cross-classified in two or more ways, it is possible to test
equivalence at the level of each way of classification.
Lord (1956) examined the correlations among 15 tests of three types:

@ Vocabulary, Figural Intersections, and Arithmetic Reasoning.
@ Each test given in two versions: Unspeeded (liberal time limits) and
Speeded.

The goal was to identify factors of performance on speeded tests:

@ Is speed on cognitive tests a unitary trait?
@ If there are several type of speed factors, how are they correlated?
@ How highly correlated are speed and power factors on the same test?

LISREL model: CFA and SEM Example: Speeded & unspeeded tests

Example: Speeded and Non-speeded tests

Hypothesized factor patterns (B):
1 oo

=¥

%

X
X X
x X
- x i x

B = x

X X
¥ T K 15 x4 X .
B 0 0 P
B e 0 5,0 & -

(1) 3 congeneric sets (2) 3 congeneric sets + speed factor

LISREL model: CFA and SEM Example: Speeded & unspeeded tests

Example: Speeded and Non-speeded tests

Hypothesized factor patterns (B):
S SR$ER

b
X
X
'B £ e % 3 @ (3) parallel: equal 8 & 6? for each
X factor
1§26 ¥ @ (4) r-equivalent: equal 3 in each
) X col
¥ FRRE e ¢ @ (5) congeneric: no equality
X constraints
;é @ (6) six factors: 3 content, 3 speed

o

N,
ol e

—

(3)-(6) Six factors

LISREL model: CFA and SEM Example: Speeded & unspeeded tests

Results:
Hypothesis Parameters  df X° Ax? (df)
1: 3 congeneric sets 33 87 264.35
2: 3 sets + speed factor 42 78 140.50 123.85(9)
3: 6 sets, parallel 27 93 210.10
4. 6 sets, T-equiv. 36 84 138.72 71.45(9)
5: 6 sets, congeneric 45 75 120.57 18.15 (9)
6: 6 factors 45 75 108.37 12.20 (0)
Notes :

@ Significant improvement from (1) to (2) — speeded tests measure
something the unspeeded tests do not.

@ 2 for (2) still large — perhaps there are different kinds of speed factors.
@ Big improvement from (3) to (4) — not parallel




Simplex Models for Ordered Latent Variables Simplex Models for Ordered Latent Variables

Guttman (1954; 1957) observed a pattern of correlations, called a simplex , ) ]
among a set of tests of verbal ability which were ordered in complexity: @ A simplex pattern is usually found whenever one has a set of latent
variables which can be considered ordered on some underlying

ﬁpel [ ng 1622 L 00 unidimensional scale.

C:g(r:rir;?t I on e oao 1 00 @ This corresponds to saying that the measures closest together on the
Vocab ' 476 ' 503 '577 100 underlying scale are most highly correlated.

Literature 394 461  .472  .688  1.00 ® Some additional examples are:

Foreign Lit  .389  .411  .429  .548  .639  1.00 o learning data: scores on a set of trials

@ longitudinal data, growth studies

The pattern is such that the correlations decrease as one moves away from o developmental studies: tasks ordered by developmental stages

the main diagonal.

Various simplex models can be tested with LISREL. Consider p fallible E le: Gutt 's Dat
variables, X1,X2, ..., Xp. The structural equations for the simplex indicate that Xxampie. uttman's Dala
teoafr? exi.)rlzvri]:)iisgrrgd with error, and that the "true scores” are linearly refated Joreskog (1970) analyzed Guttman’s data under several variations of the
Markov simplex model.
Xi=ajni+e€, i=1...,p \ measurement model \ Solution for Quasi Markov Simplex (y? = 43.81 with 6 df)— p < .001, but all
. residuals are small.
Ti=0Bn_1+&, 1i=2,...,p \ structural model\
3 . Test Qj 5; t;
The path diagramis: o o S
€ %0 Spel i ng .989 .022 0.00
Punct uati on . 626 . 212 0. 69
‘ l G anmar . 586 . 212 0. 83
' Vocab . 476 . 216 1.47
L A Literature . 394 . 218 1.74
Foreign Lit . 389 . 386 1.90

The underlying scale (t;) for the latent variables is:

0 .69 .83 147 1.741.90

| | | |
Spl PunGrm Voc Lit FLit

Xl X2

a asz
B2 /-~ Bs

i i

g, L

The Markov simnlex defines a set of scale naints for the latent variahles

p -l P




Simplex Models for Ordered Latent Variables

Notes :

@ Data which fits a simplex model should also fit a simple 1-factor model,
but such a model does not really test the assumed ordering.

@ The simplex model uses a set of ordered latent variables.

@ The estimated spacing of the scale values t; may be of importance in
interpretation.

Factorial Invariance

Multi-sample analyses:

@ When a set of measures have been obtained from samples from several
populations, we often wish to study the similarities in factor structure
across groups.

@ The ACOVS/LISREL model allows any parameter to be assigned an
arbitrary fixed value, or constrained to be equal to some other parameter.
We can test any degree of invariance from totally separate factor
structures to completely invariant ones.

@ Model
Let x4 be the vector of tests administered to group g,g =1,2,...,m, and
assume that a factor analysis model holds in each population with some
number of common factors, Kq.

T

Factorial invariance

Factorial Invariance: Hypotheses

We can examine a number of different hypotheses about how “similar” the
covariance structure is across groups.

@ Can we simply pool the data over groups?

@ If not, can we say that the same number of factors apply in all groups?
@ If so, are the factor loadings equal over groups?

@ What about factor correlations and unique variances?

Both LISREL and AMOS provide convenient ways to do multi-sample
analysis. PROC CALI S does not.

Factorial invariance

@ Equality of Covariance Matrices
H22321222:‘”:Zm

If this hypothesis is tenable, there is no need to analyse each group
separately or test further for differences among them: Simply pool all the
data, and do one analysis!

If we reject H_y, we may wish to test a less restrictive hypothesis that
posits some form of invariance.

The test statistic for H_x is

m
X2s =nlog S| - nglog|Sy|
g=1

which is distributed approx. as x? with d—y = (m — 1)p(p — 1)/2 df.
(This test can be carried out in SAS with PROC DI SCRI Musing the
POOL=TEST option)




Factorial invariance Factorial invariance

@ Same number of factors
The least restrictive form of “invariance” is simply that the number of

factors is the same in each population: To obtain a 2 for this hypothesis, estimate A (common to all groups),
B plus ®q, 5, ..., Py, and V1, V,, ..., ¥y, yielding a minimum value of the
Hi - ki = ko = --- = km = a specified value, k function, F. Then, x2 = 2 x Fuin.

To test the hypothesis Hy, given that the number of factors is the same in

This can be tested by doing an unrestricted factor analysis for k factors all groups, use

on each group separately, and summing the x?'s and degrees of freedom,
m X/Z\\k = XA — X with dajk = da — dk degrees of freedom

=Y xt@) de=mx[(p—k)—(p+k)]/2

9 @ Same factor pattern and unique variances

A stronger hypothesis is that the unique variances, as well as the factor

© Same factor pattern pattern, are invariant across groups:
If the hypothesis of a common number of factors is tenable, one may
proceed to test the hypothesis of an invariant factor pattern: Haw : M=N=-=NAy
V=V = =V,
H/\Z/\lz/\zz--':/\m

The common factor pattern A may be either completely unspecified, or be
specified to have zeros in certain positions.

Example: Academic and Non-Academic Boys Hypotheses
The following hypotheses were tested:
Hypothesis Model specifications
A=Az =1(axa)

A. H_s: Zl = Zz ‘I’l = ‘I’z = O(4><4)

Sorbom (1976) analyzed STEP tests of reading and writing given in grade 5 &, — d, constrained, free

and grade 7 to samples of boys in Academic and Non-Academic programs.

Data A1—Az—[§ 8]
. 1 i - - 0 x
Academic (N = 373) | Non-Acad (N = 249) E'_ng%r'reé%éﬁaggfs fit: with 0 x
Read Gr5 [ 28135 174.48 - Py, Py, ¥y, P, free
Writ Gr5 | 184.22 182.82 134.47 161.87
Read Gr7 |216.74 171.70 283.29 129.84 118.84 228.45 C.Hp i Hyeo & A1 = Ay A1 = Ay (constrained)

Writ Gr7 |[198.38 153.20 208.84 246.07 | 102.19 97.77 136.06 180.46

¥, = ¥, (constrained

D.Hro: Hp & ¥1 = W, {AlAZ( )
1 — 432

P, = P, (constrained)
E. HA797¢ : H/\,@ & ‘I>1 = ‘I’z v, =w,
A=A




Factorial Invariance: LISREL syntax

Analysis
The analysis was carried out with both LISREL and AMOS. AMOS is
particularly convenient for multi-sample analysis, and for testing a series of Model B for Academic group: 2 correlated, non-overlapping factors
nested hypotheses. Ex12: 2 Correlated factors: Hypothesis B (G oup A
. . . DAt a NG oup=2 NI =4 NObs=373
Summary of Hypothesis Tests for Factorial Invariance LAbels file=lisrel12.dat: CMatrix file=lisrel 12. dat
MOdel NX=4 NKSI =2
Hypothesis Overall fit Group A Group N-A I Pattern: 1 free paraneter and 1 fixed parameter in each col um
2 FRee LX(2,1) LX(4,2)
X df prob AIC | GFI RMSR | GFI RMSR STart 1 LX(1 1) LX(3. 2)
-y 38.08 10 .000 55.10 | 982 28.17 | .958 42.26 OUt put

k=2 152 2 .468 37.52 | .999 0.73 | .999 0.78

877 4 067 4065 | 996 517 | 989 -83 Model B for Non-Academic group: same pattern as Group A

Ex12: 2 Correlated factors: Hypothesis B (G oup N-A)

moowsx
ITIIT

AW 2155 8 .006 44.55 | .990 7.33 | .975 11.06 DAt a NObs=249
AV, 38.22 11 .000 53.36 | .981 28.18 | .958 42.26 LAbels file=lisrell2.dat; Cwvatrix file=lisrel 12. dat
Mdel LX=PS
) ) ) . PDi agram
@ The hypothesis of equal factor loadings (Ha) in both samples is tenable. QUt put
@ Unique variances appear to differ in the two samp_les. ] LX=PS: same pattern and starting values as in previous group but loadings
@ The factor correlation (¢12) appears to be greater in the Academic sample are not constrained to be equal

than in the non-Academic sample.

Factorial Invariance: LISREL syntax Factorial Invariance: AMOS Basic syntax
Model C for Academic group: equal Ax— same as Model B Model B for Academic group:
Ex12: Equal Lambda: Hypothesis C (G oup A) Sub Main
DAta NG oup=2 N =4 NCbs=373 . . . Di m Sem As New AnpsEngi ne
LAbels file=lisrell2.dat; CVatrix file=lisrel 12. dat Wth Sem
Mdel NX=4 NKSI =2 ) ) .title "Academi c and NonAcademi ¢ Boys (Sorbom 1976):
! Pattern: 1 free paraneter and 1 fixed parameter in each colum & "Equal ity of Factor Structures"
FRee LX(2,1) LX(4,2)
STart 1 LX(1,1) LX(3,2) ' Start out with the |east constrained nodel
QUt put .Model "B: 2 Factors, unconstrained”
Model C for Non-Academic group: same A, as Group A : gegl “’C\Taoup” :'A' nvar. x| E " Academ c”
Ex12: 2 Correlated factors: Hypothesis B (G oup N-A) ot ?ﬂgtu[né " Rggdegg :0{31 ) G5 + (1) epsl”
DAta NCbs=249 _ . L .Structure "Wit_G5 = (Lla) G5 + (1) eps2"
LAbels file=lisrel12.dat; Cvatrix file=lisrel12. dat _Structure "Read G7 = ( 1) G7 + (1) eps3"
'\P/gdel LX=I' Nvari ant .Structure "Wit_&7 = (L2a) G7 + (1) eps4"
wagram .Structure "G5 <--> &7 (phil)"

put .Structure "epsl (vla)"
LX=I N: loadings constrained to be equal to those in Group A .Structure "eps2 (v2a)"

.Structure "eps3 (v3a)"

Complete example: .Structure "eps4 (v4a)"

www. mat h. yor ku. ca/ SCS/ Cour ses/factor/lisrel/lisrel12.1s8




Factorial invariance Example: Academic and Non-academic boys Factorial invariance Example: Academic and Non-academic boys

Factorial Invariance: AMOS Basic syntax

Model B for Non-Academic group:

. Begi nG oup "invar.xls", "NonAcadem c"
. &G oupNane "NonAcadeni ¢ Boys"

.Structure "Read_ G5 =( 1) G5 + (1) epsl”
.Structure "Wit_G5 = (L1b) G5 + (1) eps2"
.Structure "Read_ G7 = ( 1) G7 + (1) eps3"
.Structure "Wit_G7 = (L2b) &7 + (1) eps4”

.Structure "G5 <--> &7 (phi2)"
.Structure "epsl (vlb)"
.Structure "eps2 (v2b)"
.Structure "eps3 (v3b)"
.Structure "eps4 (v4b)"

Note that the model is the same, but all parameter names are suffixed with 'b’,
so they are not constrained to be equal

Factorial Invariance: AMOS Basic syntax

Now, other models can be specified in terms of equality constraints across
groups:
" Fix the loadings in the two groups to be equal
. Mbdel "C. = |oadings",
"Lla = L1lb; L2a = L2b"

" Add contraint that unique variances are equa
.Model "D: C + = unique var",
"Lla=L1lb; L2a=L2b; _
vla=vlb; v2a=v2b; v3a=v3b; v4da=v4b"
" Add contraint that factor correlations are equa
.Mbdel "E: D+ = factor corr",
"Lla=L1b; L2a=L2b;
vla=vlb; v2a=v2b;
phi 1=phi 2"
End Wth
End Sub

“v3a=v3b; v4a=v4b;

Identifiability in CFA models

Identifiability in CFA models

@ Because they offer the possibility of fitting hypotheses that are partially
specified, care must be take with CFA models to ensure that a unique
solution can be found.

@ For an unrestricted factor model with k latent factors, we have seen that
at least k? restrictions must be imposed.

@ It turns out that this is a necessary , but not a sufficient condition for the
model to be identified.

Identifiability in CFA models

|dentifiability in CFA models

@ In addition, it is necessary to specify the unit of measurement, or scale
for each latent variable. This may be done by (arbitrarily) assigning one
fixed non-zero loading, typically 1, in each column of the factor matrix.

@ For a problem with 6 variables and 2 factors, the loading matrix would
look like this:

N =

XX OX X
XX ERXXO
©
N
I
| —
X
B X
—_

The fixed 1s correspond to equating the scale of factor 1 to that of
variable 1, and factor 2 is equated to variable 4.




Identifiability in CFA models Identifiability in CFA models

Identifiability condition

@ Let 6 be the t x 1 vector containing all unknown parameters in the model,
and let
3(0) = A®AT + ¥
be the covariance matrix expressed in terms of those parameters.

@ Then, the parameters in @ are identified if you can show that the elements
of @ are uniquely determined functions of the elements of X, that is:

2(01) = 2(92) — 01 = 02

Identifiability condition

For example, for a 1-factor, 3-variable model:

X1 )\1 Z1
BN
X3 A3 Z3

Then, letting ® = var(¢) = 1 and var(z;) = vy, the covariance matrix of the
observed variables can be expressed as:

)‘% +
»(9) = M A2+
A3)\; AsA1 A2+ 3

Each parameter can be solved for, so the model is identified.

|dentifiability rules: t rule

t-rule: There cannot be more unknown parameters than there are known
elements in the sample covariance matrix. This is a necessary , but not
sufficient condition.

t<p(p+1)/2

Example :
For 6 tests, you can estimate no more than 6 x 7/2 = 21 parameters.

Identifiability in CFA models

|dentifiability rules: t rule

(a) Single Factor, Two Indicators (b) Single Factor, Three Indicators

EioiE
L K
X || X

1.0

3 variables: 6 var-covariances
model: 6 free parameters
just identified

2 variables: 3 var-covariances
model: 4 free parameters
not identified




Identifiability in CFA models Identifiability in CFA models

Identifiability rules: 3 variable rules

3-variable rules: A factor model is identified when there are:
@ three or more variables per factor
@ each variable has one and only one non-zero loading
@ the unique factors are uncorrelated (¥ is a diagonal matrix).

There are no restrictions on the factor correlations (®). These conditions are
jointly sufficient , though not necessary .

Identifiability rules: 2 variable rules

2-variable rules A less restrictive set of rules is:

@ two or more variables per factor

@ each variable has one and only one non-zero loading

@ each factor is scaled by setting one ); = 1 in each column.
@ the unique factors are uncorrelated (¥ is a diagonal matrix).
@ there are no fixed zero elements in ®.

These conditions are also sufficient , though not necessary .
Example :

With 4 variables, and 2 latent variables, the model is identified if the
parameters are specified as

1 0
Az O P11
A= , b = = free
0 1 [ 21 P22
0 I
Equivalent models Original Model
Eas Ete Epe Efe Eea Ecp

@ In standard CFA models based on the common factor model
(uncorrelated errors, 1st-order model) identified models are unique.

@ In more general models, it is possible to have several distinct equivalent
models

o same degrees of freedom, x?
o different substantive interpretation

Recall the model for Ability and aspiration:

Original Model
Eas Ete Epe Efe Eea Ec

L pd L pd pd pi

Ability Perceived | | Perceived | | Perceived ;
Self- | Teacher || Parental || Friends' | [iCeaional| Colege
Concept | |Evaluation| |Evaluation| | Evaluation

P

pd / e pd L e

Ability Perceived | | Perceived | | Perceived :
Self- Teacher || Parental || Friends’ Efg;:ggf C};)llal;%e
Concept ||Evaluation| |[Evaluation| | Evaluation

Equivalent Model (a)

Eas Ete Epe Efe Eea Ecp
bl/ £ . pd Z /
Ability Perceived | | Perceived | | Perceived :
Self-' || “Teacher | Parental || Friends’ | [ilucational| College
Concept ||Evaluation| |Evaluation| | Evaluation

Dbty

@ 2nd-order model, with a general 2nd-order factor




Identifiability in CFA models Power and sample size for EFA and CFA

@ 1-factor model, with correlated unique variables

Equivalent Model (b)
el e g /Efj*%
Ability | | Perceived || Perceived | | Perceived |  Equcational| College

Self- || Teacher || Parental || Friends’ AL
Concept ||Evaluation| [Evaluation| | Evaluation Aspiration||  Plans

Equivalent Model (c)
E;s Eie Epe Ere Eea Eep

pd pa L £ yd L

Ability | Perceived | [ Perceived | [ Perceived Educw-omi College

Self- Teacher || Parental Friends’ e
Concept | |Evaluation| |[Evaluation| | Evaluation s g cherise

(e (B

@ Two overlapping factors

Power and Sample Size for EFA and CFA

Bad news Determining the required sample size, or the power of a
hypothesis test are far more complex in EFA and CFA than in
other statistical applications (correlation, ANOVA, etc.)

Good news There are a few things you can do to choose a sample size
intelligently.

Power and sample size for EFA and CFA

Power and Sample Size for EFA and CFA

Rules of thumb for EFA

For EFA, there is little statistical basis for determining the appropriate sample
size, and little basis for determining power (but the overall approach of CFA
can be used).

Some traditional “rules of thumb” for EFA:

@ The more the better!

@ Reliability and replicability increase directly with v/N.
@ More reliable factors can be extracted with larger sample sizes.

@ Absolute minimum— N = 5p, but you should have N > 100 for any
non-trivial factor analysis. Minimum applies only when communalities are
high and p/k is high.

@ Most EFA and CFA studies use N > 200, some as high as 500-600.

@ Safer to use at least N > 10p.

@ The lower the reliabilities, the larger N should be.

Using desired standard errors

@ An alternative approach for EFA considers the standard errors of
correlations, in relation to sample size.

@ This usually provides more informed guidance than the rules of thumb.
It can be shown that,
1-p7 -1
o(p) = + O(N
() = = + O
so, we could determine the sample size to make the standard error of a
“typical” correlation smaller than some given value.

1_2
VN> =— 2
o(p)
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Using desired standard errors

Sample size
p 50 100 200 400 800
0.1 0.140 0.099 0.070 0.050 0.035
0.3 0.129 0.091 0.064 0.046 0.032
0.5 0.106 0.075 0.053 0.038 0.027
0.7 0.072 0.051 0.036 0.026 0.018

Standard error decreases as |p| increases.

So, if you want to keep the standard error less than 0.05, you need
N = 400 when the “typical” correlation is only 0.1, but N = 100 when the
“typical” correlation is 0.7.

In many behavioural and psychology studies, correlations among
different scales are modest, at best (0.1 < p < 0.3).

For typical scale analysis, one should expect the correlations among
items on the same scale to be much higher (0.7 < p < 0.9), = smaller
required sample size for the same standard error.

Power and Sample size for CFA

@ Problems: The situation in CFA wrt power analysis is typically reversed
compared with other forms of hypothesis tests—
@ x? = (N — 1)Fpin, so large N = reject Ho.
@ With small specification errors, large sample size will magnify their effects =
reject Ho.
@ With large specification errors, small sample size will mask their effects =
accept Ho.

@ Overall approach: MacCallum, Browne and Sugawara (1996) approach
allows for testing a null hypothesis of 'not-good-fit’, so that a significant
result provides support for good fit.

o Effect size is defined in terms of a null hypothesis and alternative hypothesis

value of the root-mean-square error of approximation (RMSEA) index.
Typical values for RMSEA:

< .05 close fit
.05 —-.08 fair
.08 — .10 mediocre
> .10 poor

@ These values, together with the df for the model being fitted, sample size
(N), and error rate (o), allow power to be calculated.

Power and Sample size for CFA

@ The CSMPOVER macro

@ See: http://ww. mat h. yor ku. ca/ SCS/ sasnmac/ csnpower . ht m

@ Retrospective power analysis— uses the RMSEA values from the
OUTRAM= data set from PROC CALIS for the model fitted.

9 Prospective power analysis— values of RMSEA, DF and N must be provided
through the macro arguments.

Example: Retrospective power analysis

Here, we examine the power for the test of Lord’s two-factor model for
speeded and unspeeded vocabulary tests, where N = 649.

title "Power analysis: Lord s Vocabul ary Data";
title2 "Lord’ s data: Hl- X1 and X2 parallel,

Y1l and Y2 parallel, rho=1";
proc calis data=lord cov sumrary outramerani;
linegs x1 = betax F1 + el
x2 = betax F1 + e2,
yl = betay F2 + e3,
y2 = betay F2 + e4;
std F1 F2 =1 1,
el e2 e3 e4 = vex vex vey vey;
cov F1 F2 =1,

run;
*-- Power analysis from RVBEA statistics in this nodel;
title 'Retrospective power analysis’;

%csnpower (dat a=raml) ;
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Example: Retrospective power analysis Example: Prospective power analysis
For prospective power analysis, we specify the RMSEA for alternative

hypotheses of 'not good fit'’ with the RMSEAA= parameter (for Hy).

*x--: title ’'Prospective power analysis’;
%csnpower (df =6, rnseaa=%tr(.08 to .12 by .02),
Results include: pl ot =%str (power*n =rnseaa));
Nane of HO Ha Results include a listing:
Al pha df Vari abl e N fit value fit value Power . HO . Ha
Al pha df N fit val ue fit val ue Power
0. 05 6 RMSEAEST 649 0. 05 0. 08977 0. 75385 0. 05 6 40 0. 05 0.08 0. 08438
RVSEALOB 649 0. 05 0. 06349 0. 19282 28 8.82 8.%8 8.%%%?%
RVSEAUPB 649 0. 05 0. 11839 0. 99202 60 0. 05 0. 08 0 10168
With this sample size, we have power of 0.75 to distinguish between a fit with 28 8- 82 8- ig 8- %%(1)‘2‘
RMSEA=0.05 and one with RMSEA=0.09. 80 0. 05 0. 08 0. 11883
80 0. 05 0.10 0. 20262
80 0. 05 0.12 0. 32093
100 0. 05 0.08 0. 13585
100 0. 05 0.10 0. 24333
100 0. 05 0.12 0.39214
400 0.05 0.08 0. 37545
400 0. 05 0.10 0. 72599
400 0. 05 0.12 0.93738
Plot of Power by N for each level of RMSEAA: . L .
7 Individual model specifications
10%Hafit +++008 *-c010 °=2012 |
0.91
0.8
0.7
+ 0.67
() . .
205/ @ The overall approach can only evaluate power or required sample size for
& 4 the whole model.
03 @ It does not distinguish among the a priori specifications of free and fixed
0'27 parameters implied by the model being tested.
0'1, Things become more difficult when the focus is on power for deciding on
0'07 some one or a few specifications (parameters) in a model.
0 100 200 300 400

Sample size

@ For the most stringent test of Hy : RMSEA = 0.05 vs.
Ha : RMSEA = 0.08, the largest sample size, N = 400 only provides a
power of 0.375.

@ Good thing they used N = 649!




Individual model specifications

There are some promising results:

@ Satorra (1989) found that the modification indices (“Lagrange multipliers
in PROC CALI S)— Ay? for fixed parameters in a model approximate the
x? non-centrality parameters required to determine power for a specific
fixed parameter.

@ Similarly, the Wald tests, x5 = (parm/s(parm))? approximate the x?
non-centrality parameters required to determine power for free
parameters.

@ These 2 values should be studied in relation to the estimated change in
the parameter (ECP).

@ Alarge Ax? with a small ECP simply reflects the high power to detect smalll
differences which comes with large N.
@ Similarly, a small Ax? with a large ECP reflects low power for large
differences with small N.
See the paper by Kaplan, “Statistical power in structural equation
models”, wwv. gsu. edu/ ~nkt eer / power . ht m for further discussion
and references on these issues.




