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Basic ideas of factor analysis

Basic ldeas of Factor Analysis

Overview & goals

@ Goal of factor analysis: Parsimony— account for a set of observed
variables in terms of a small number of latent, underlying constructs
(common factors).

@ Fewer common factors than PCA components
9 Unlike PCA, does not assume that variables are measured without error
@ Observed variables can be modeled as regressions on common factors
@ Common factors can “account for” or explain the correlations among
observed variables

@ How many different underlying constructs (common factors) are needed
to account for correlations among a set of observed variables?
@ Rank of correlation matrix = number of linearly independent variables.
@ Factors of a matrix: R = AAT (“square root” of a matrix)
@ Variance of each variable can be decomposed into common variance
(communality) and unique variance (uniqueness)

Basic ideas of factor analysis Linear regression on common factors

Basic ideas: 1. Linear regression on common factors

@ A set of observed variables, x;,X2, ..., Xp is considered to arise as a set
of linear combinations of some unobserved, latent variables called
common factors, &1, &, ..., &.

@ That is, each variable can be expressed as a regression on the common
factors. For two variables and one common factor, &, the model is:

Navo
X2 = X+22

X2

@ The common factors are shared among two or more variables. The
unique factor, z;j, associated with each variable represents the unique
component of that variable.




Basic ideas: 1. Linear regression on common factors

Assumptions:
@ Common and unique factors are uncorrelated:

r(,z1) =r(z)=0
@ Unique factors are all uncorrelated and centered:

r(za,z2) =0 E(z)=0

@ This is a critical difference between factor analysis and component

analysis: in PCA, the residuals are correlated.

@ Another critical difference— more important— is that factor analysis only
attempts to account for common variance, not total variance

Basic ideas of factor analysis Linear regression on common factors

For k common factors, the common factor model can be expressed as

X1 A11 A1k ¢ 7
X5 A21 A2k 1 5
= : : : + ) D
&k
Xp Ap1 Apk Zp
or, in matrix terms:
X=AfE+2z (2)

This model is not testable, since the factors are unobserved variables.
However, the model (2) implies a particular form for the variance-covariance
matrix, X, of the observed variables, which is testable:

S=APAT+ T (3)

where:

@ A,k = factor pattern (“loadings”)

® Py« = matrix of correlations among factors.

@ ¥ = diagonal matrix of unique variances of observed variables.
It is usually assumed initially that the factors are uncorrelated (® = 1), but this
assumption may be relaxed if oblique rotation is used.

Basic ideas: 2. Partial linear independence

@ The factors “account for” the correlations among the variables, since the
variables may be correlated only through the factors.

@ If the common factor model holds, the partial correlations of the
observed variables with the common factor(s) partialled out are all
zero:

r(xi, ) =r(zi,z)=0

@ With one common factor, this has strong implications for the observed
correlations:

Basic ideas of factor analysis Partial linear independence

@ That is, the correlations in any pair of rows/cols of the correlation matrix
are proportional if the one factor model holds. The correlation matrix has
the structure:

A1 ujy
A u
T de ]t ?

2
Ap u

Rpxp) =

@ Similarly, if the common factor model holds with k factors, the pattern of
correlations can be reproduced by the product of the matrix of factor
loadings, A and its transpose:

o = E(Xl, X2) = E[()\lf + Zl)()\zg + Zg)]
= A
s = Mz
ie i = Ai )‘j

(pxp)

A
(pxk)

(kxp)




Basic ideas of factor analysis Partial linear independence Basic ideas of factor analysis Partial linear independence

Simple example Implications
Consider the following correlation matrix of 5 measures of “mental ability”

x1 1.00 .72 .63 .54 .45

X2 .72 1.00 .56 .48 .40 The implications of this are:
X3 .63 .56 1.00 .42 .35 @ The matrix (R — ¥), i.e., the correlation matrix with communalitites on the
X4 .54 .48 .42 1.00 .30 diagonal is of rank k < p. [PCA: rank(R) = p]
X5 .45 .40 .35 .30 1.00 @ Thus, FA should produce fewer factors than PCA, which “factors” the
@ These correlations are exactly consistent with the idea of a single matrix R with 1s on the diagonal.
common factor (g). @ The matrix of correlations among the variables with the factors partialled
@ The factor loadings, or correlations of the variables with g are out is:
.9 . 8 .7 .6 .5 2
@ eg.,rp=.9x.8=.72r3=.9x.7=.63; etc. R AAT) @ — v o | mat
@ Thus, the correlation matrix can be expressed exactly as (R— )=¥= - ’ = adiagonalmatrix
u
P
g 19 36 @ Thus, if the k-factor model fits, there remain no correlations among the
Rexs) = | .7 [ 9876 ‘5] n 51 observed variables when the factors have been taken into account.
.6 .64
5 .75

Basic ideas of factor analysis Partial linear independence: demonstration Basic ideas of factor analysis Partial linear independence: demonstration

Partial linear independence: demonstration Partial linear independence: demonstration

proc corr nosinple noprob;

@ Generate two factors, MATH and VERBAL. var mat_test eng_test sci_test his_test:

@ Then construct some observed variables as linear combinations of these. title2 "Sinple Correlations anong TESTS';
data scores; drop n; mat _t est eng_test sci _test hi s_t est
do N =1 to 800; *-- 800 observations;
MATH = normal (13579) ; Mat hemati cs test 1. 000 -0. 069 0. 419 -0.144
VERBAL= nor nal (13579) : Engl ish test -0. 069 1. 000 -0. 097 0. 254
mat_test= normal (76543) + 1.*MATH - . 2*VERBAL; E"C'ngfg Lest o 0 Sk 5% BT
eng_test= normal (76543) + .1+«NMATH + 1.*VERBAL,; i i i i
sci _test= normal (76543) + .7xNMATH - . 3*VERBAL,; i ol b:
his_test= normal (76543) - .2*MATH + . 5+VERBAL: proc corr nosinpl € noproo, .
out put ; var mat_test eng_test sci_test his_test;
end: partial MATH VERBAL;
| abel MATH = "Math Ability Factor’ title2 'Partial Correlations, partialling Factors’;
VERBAL = "Verbal Ability Factor’ . :
. h
mat test = ' Mathematics test’ mat _t est eng_t est sci _test is test
eng_test = 'English test’ Mat hemat i cs t est 1. 000 -0. 048 -0. 015 0. 035
sci _test = 'Science test’ English test -0.048 1. 000 0.028 -0.072
his test = "History test’; Sci ence test -0.015 0.028 1. 000 -0. 064
- Hi story test 0. 035 -0.072 -0. 064 1. 000




Basic ideas of factor analysis Common variance vs. unique variance Basic ideas of factor analysis Common variance vs. unique variance

Basic id -3 C . . . If a measure of reliability is available, the unique variance can be further
asic lgeas. . Lommaon variance vs. unique variance divided into error variance, eiz, and specific variance, siz. Using standardized
variables:
reliability
@ Factor analysis provides an account of the variance of each variable as var(x) = 1 — Ih.z n s?\ 4 g2
common variance (communality) and unigue variance (uniqgueness). ' : N L
@ From the factor model (with uncorrelated factors, ® = 1), uniqueness
X=AL+2 “) due to commeon factors due to unigue factor
it can be shown that the common variance of each variable is the sum of (‘communality’) (‘uniqueness’)
squared loadings: P A ~ A ~
var(xi)) = M+ + A\ tvar(z) | 5 5 |
— h £k
= h?(communality) + u?(uniqueness) YT Y
due to variable ("specificity”) measurement error
L e
. — .
“reliability”
Factor Estimation Methods: Basic ideas
Correlations or covariances?
E.g., for two tests, each with reliability r,,, = .80, and Correlations or covariances?
As we saw in PCA, factors can be extracted from either the covariance matrix
X1 = .8£+4.6z; (%) of the observed variables, with the common factor model:
X = .6£+.8z; 5 ABAT 4T
_ . or the correlation matrix (R), with the model
we can break down the variance of each variable as:
_ T
var = common + unique —(specific + error) R=APA +W
Xx: 1 = 64 + 36 — .16 + .20
X: 1 = 36 + 64 — 44 + .20 ) ]
@ If the variables are standardized, these are the same: R =X
@ If the units of the variables are important & meaningful, analyze X
@ Some methods of factor extraction are scale free— you get equivalent
results whether you analyse R or X.
@ Below, I'll describe things in terms of X.




Factor Estimation Methods: Basic ideas Factor Estimation Methods: Basic ideas

Common characteristics Common characteristics

Many methods of factor extraction for EFA have been proposed, but they have
some common characteristics:

@ Initial solution with uncorrelated factors (® = 1)
@ The model becomes

S=AAT+ T @ Most iterative methods cycle between estimating factor loadings (given
o If we know (or can estimate) the communalities (= 1 - uniqueness = 1 — ), com_munallty estimates) and estimating the communalltles (given factor
we can factor the “reduced covariance (correlation) matrix”, & — ¥ loadings). The process stops when things don’t change too much.

@ Obtain initial estimate of ¥ ~
@ Estimate A from eigenvectors/values of (X — ¥)

@ In (5), U is the matrix of eigenvectors of (¥ — ¥) and D is the diagonal Q Update estimate of @, return to step 2 if max |¥ — Wia| < ¢
matrix of eigenvalues.

@ Initial estimates of communalities: A good prior estimate of the
communality of a variable is its’ R? (SMC) with all other variables.

> — ¥ =AA"T = (UDY?)(DY?UT) (5)

SMCi = R | giers < h? = communality = 1 — v
Factor Estimation Methods: Fit functions Factor Estimation Methods

Given S, .p), an observed variance-covariance matrix of X (. 1), the

computational problem is to estimate A, and ¥ such that: @ Maximum likelihood [Scale Free] Finds the parameters that maximize

the likelihood (“probability”) of observing the data (S) given that the FA
S—AAT4+U ~ S model fits for the population X.

- ~ S-1 S-1
Let F (S, X) = measure of distance between S and 3. Factoring methods Fve =tr(SX77) —log|X7°S| —p
differ in the measure F used to assess badness of fit:

@ Iterated PFA (ULS, PRINIT) [NOT Scale Free] Minimizes the sum of

\ @ In large samples, (N — 1)Fpin ~ x>
squares of differences between S and X. "

@ The hypothesis tested is

Fs =tr(S — 3)? Ho : k factors are sufficient
@ Generalized Least Squares (GLS) [Scale Free] Minimizes the sum of Vvs. _
squares of differences between S and ¥, weighted inversely by the Hy :> k factors are required
variances of the observed variables. @ Good news: This is the only EFA method that gives a significance test for the

. number of common factors.
Fes =tr(l — 8_12)2 @ Bad news: This x? test is extremely sensitive to sample size




Factor estimation methods

Example: Spearman’s "Two-factor’ theory

Example: Spearman’s 'two-factor’ theory

Spearman used this data on 5 tests to argue for a 'two-factor’ theory of ability
@ general ability factor— accounts for all correlations
@ unique factors for each test

data spear5 (TYPE=CORR);

input TYPE $ NAME $ testl - testh;
| abel testl=' Mathematical judgenent’
test2="Control | ed associ ati on’
test3="Literary interpretation’
test4="Sel ecti ve judgenent’
test5="Spelling’ ;
dat al i nes;
CORR testl 1.00 .
CORR test2 .485 1.00 . .
CORR test3 .400 .397 1.00 . .
CORR test4 .397 .397 .335 1.00 .
CORR test5 .295 .247 .275 .195 1.00
N 100 100 100 100 100
NB: The TYPE_ = ' N observation is necessary for a proper x? test.

Factor estimation methods Example: Spearman’s "Two-factor’ theory

Example: Spearman’s 'two-factor’ theory

Use METHOD=M. to test 1 common factor model

proc factor data=spear5

met hod=m /* use maxi mum | i kel i hood */

residual s [+ print residual correlations */

nfact =1; /* estimate one factor * [
title2 ' Test of hypothesis of one general factor’;
Initial output:
Initial Factor Method: Maximum Li kel i hood

Prior Comunal ity Estimates: SMC
TEST1 TEST2 TEST3 TEST4 TESTS

0. 334390 0.320497 0.249282 0.232207 0.123625

1 factors will be retained by the NFACTOR criterion.

Iter Criterion Ri dge Change Conmunal ities
1 0. 00761 0.000 0.16063 0.4950 0.4635 0.3482 0.3179 0. 1583
2 0. 00759 0.000 0.00429 0.4953 0.4662 0.3439 0.3203 0. 1589
3 0. 00759 0.000 0.00020 0.4954 0.4662 0.3439 0.3203 0. 1587

Factor estimation methods

Example: Spearman’s "Two-factor’ theory

Hypothesis tests & fit statistics:

Significance tests based on 100 observati ons:

Test of HO: No common factors.

vs HA: At | east one commopn factor.
Chi -square = 87. 205 df = 10 Prob>chi **2 = 0. 0001
Test of HO: 1 Factors are sufficient.

vs HA: More factors are needed.
Chi -square = 0.727 df =5 Prob>chi x*2 = 0.9815
Chi -square without Bartlett’s correction = 0.7510547937
Akai ke's Information Criterion = -9.248945206
Schwar z’ s Bayesian Criterion = -22.27479614
Tucker and Lewis’s Reliability Coefficient = 1.1106908068

NB: The 1-factor model fits exceptionally well— too well? (like Mendel's peas)

Example: Spearman’s 'two-factor’ theory

Factor pattern (“loadings”):

Factor estimation methods Example: Spearman’s "Two-factor’ theory

Factor Pattern
FACTORL
TEST1 0. 70386 Mat herat i cal j udgenent
TEST2 0. 68282 Control |l ed associ ation
TEST3 0. 58643 Literary interpretation
TEST4 0. 56594 Sel ective judgenent
TEST5 0. 39837 Spel I'i ng

@ NB: For uncorrelated factors, the factor coefficients are also correlations
of the variables with the factors.

@ Mathematical judgment is the 'best’ measure of the g factor (general
intelligence)

@ Spelling is the worst measure




Factor estimation methods Example: Spearman’s "Two-factor’ theory

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Spearman’s 'two-factor’ theory

Common and unique variance:

FACTORL Comon  Uni que
TEST1 0. 70386 . 495 . 505 Mat hemati cal j udgenent
TEST2 0.68282 . 466 .534 Controll ed associ ation
TEST3 0. 58643 . 344 . 656 Literary interpretation
TEST4 0. 56594 . 320 . 680 Sel ective judgenent
TEST5 0. 39837 . 159 . 841 Spel l'i ng

@ Mathematical judgment is the 'best’ measure of the g factor
@ Spelling is the worst measure

Example: Holzinger & Swineford 9 abilities data

Nine tests from a battery of 24 ability tests given to junior high school students
at two Chicago schools in 1939.

title "Hol zinger & Swineford 9 Ability Vari abl es’;
data psych9(type=CORR) ;
Input _NAME_ $1-3 TYPE_ $5-9 X1 X2 X4 X6 X7 X9 X10 X12 X13;
l'apel X1='Visual Perception’ X2='Cubes’ X4='Lozenges’
X6="Par agr aph Con'prehen’ X7="Sent ence Conpl etion’
X9= W)rd Meani ng’ X10=" Addi tion’ X12=" Counting Dots’
X13=" Strai ght-curved Caps’ ;
dat al i nes;
X1 CORR .
X2 CORR .318 1.
X4  CORR . 436 419 1.
X6 CORR .335 .234 .323 1.
X7 CORR .304 .157 .283 722 1.
X9 CORR .326 .195 .350 .714 685 1.
X10 CORR .116 .057 .056 .203 .246 .170 1.
X12 CORR .314 .145 .229 .095 .181 113 .585 1.
X13 CORR . 489 239 .361 309 .345 .280 .408 512 1.

N 145 145 145 145 145 145 145 145 145

MEAN  29.60 24.80 15.97 9.95 18.85 90.18 68.59 109.75 191.8

STD 6.890 4.43 8.29 3.36 4.63 7.92 23.70 20.92 36.91

RELI . 7563 . 5677 .9365 .7499 .7536 .8701 .9518 .9374 .8889
run;

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

“Little Jiffy:” Principal factor analysis using SMC, Varimax rotation

@ The 9 tests were believed to tap 3 factors: Visual, Verbal & Speed

@ The default analysis is METHOD=PRINCIPAL, PRIORS=0ONE « PCA!

@ The results are misleading, about both the number of factors and their
interpretation.

title2 'Principal factor solution’;
proc Factor data=psych9
Met hod=PRI NCI PAL
Pri ors=SMC
Round fl ag=.3
Scree
Rot at e=VARI MAX;
run;

@ method=PRINCIPAL is non-iterative; method=PRINIT uses iterated PFA
@ ROUND option prints coefficients x 100, rounded; FLAG option prints a *
next to larger values

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Output: Eigenvalues

Ei genval ues of the Reduced Correlation Mtri x:
Total = 4.05855691 Average = 0.45095077

Ei genval ue Di fference Proportion Cunul ati ve

1 3. 07328008 1. 99393040 0.7572 0. 7572
2 1. 07934969 0. 45916492 0. 2659 1. 0232
3 0. 62018476 0. 58982990 0.1528 1.1760
4 0. 03035486 0.10824191 0. 0075 1.1835
5 -. 07788705 0. 03243783 -0.0192 1.1643
6 -.11032489 0. 03864959 -0.0272 1.1371
7 -. 14897447 0. 02648639 -0. 0367 1.1004
8 -. 17546086 0. 05650435 -0. 0432 1.0572
9 -. 23196521 -0.0572 1. 0000

2 factors will be retained by the PROPORTION criterion.

@ NB: The default criteria (PROPORTION=1.0 or MINEIGEN=0) are
seriously misleading.
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Example: Holzinger & Swineford 9 abilities data Example: Holzinger & Swineford 9 abilities data
Scree plot
Holzinger & Swineford 9 Ability Variables Initial (unrotated) factor pattern:
Principal factor solution (SMC)
4 Factor Pattern
Factorl Fact or 2
: X1 Vi sual Perception 57 * 13
X2 Cubes 37 * 4
5] X4 Lozenges 53 = 2
E X6 Par agr aph Conpr ehen 74 * -39 »
z X7 Sent ence Conpl etion 72 * -31 ~
5 Cene X9 Word Meani ng 71 =+ -38 *
1 B X10 Addi tion 41 44
\-\ Cinen - 045 X12 Counting Dot s 46 * 59 *
\.\* X13 St rai ght-curved Caps 62 * 36 *
01 Py ° ° _
@ Interpretation ??
: ; ; ; ; ; ; )
Number

Factor estimation methods Example: Holzinger & Swineford 9 abilities data
Example: Holzinger & Swineford 9 abilities data Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solutions

Varimax rotated factor pattern:

Rotated Factor Pattern title2 ' Maxi mum liklihood solution, k=2';
proc Factor data=psych9
Factorl Factor2 Met hod=M_
X1 Vi sual Perception 39 * 43 * NFact =2;
X2 Cubes 28 25 run;
X4 Lozenges 42 = 32 *
§$ EZL?SL?E“OOC"@”PQE%Q ?3 : %% @ In PCA, you can obtain the solution for all components, and just delete
X9 Word Meani ng 80 * 10 the ones you don’t want.
X10 Addi ti on 8 59 * ° . . . .
X12 Count i ng Dot s 3 75 In iterative EFA methods, you have to obtain separate solutions for
X13 St rai ght - curved Caps 30 65 * different numbers of common factors.

@ Here, we just want to get the x? test, and other fit statistics for the k = 2

@ Interpretation ?? factor ML solution.
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Example: Holzinger & Swineford 9 abilities data Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution, k=2 Maximum likelihood solution: k=3
Significance Tests Based on 145 Cbservati ons
Pr >
Test DF Chi - Squar e Chi Sq
proc Factor data=psych9
HO: No common factors 36 483. 4478 <. 0001 Qut st at =FACTORS /+ Qutput data set =/
HA: At | east one common factor _
HO: 2 Factors are sufficient 19 61.1405  <.0001 Met hod=M
HA: More factors are needed NFact =3
Chi - Square wi thout Bartlett’s Correction 63. 415857 Round flag=.3
Akai ke’s Information Criterion 25. 415857 Rot at e=VARI VAX;
Schwar z’ s Bayesian Criterion - 31. 142084
Tucker and Lewis's Reliability Coefficient 0. 821554 @ Specify k = 3 factors
@ Obtain an OUTSTAT= data set— I'll use this to give a breakdown of the
@ The sample size was supplied with the _TYPE_ =N observations in the variance of each variable
correlation matrix. Otherwise, use the option NOBS=n on the PROC @ A VARIMAX rotation will be more interpretable than the initial solution
FACTOR statement. (If you don't, the default is NOBS=10000!)
@ Test of Hy : No common factors — Hp : R = I: all variables uncorrelated
@ Hp : k = 2 is rejected here
Factor estimation methods Example: Holzinger & Swineford 9 abilities data
Example: Holzinger & Swineford 9 abilities data Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution, k=3 Maximum likelihood solution, k=3
Pr > ]
Test DF Chi - Squar e Chi Sq Unrotated factor solution:
HO: No common factors 36 483. 4478 <. 0001 Factor Pattern
HA: At | east one common factor
HO: 3 Factors are sufficient 12 9. 5453 0. 6558 Factorl Factor2 Factor3
HA: More factors are needed X1 Vi sual Perception 51 * 18 43 «
X2 Cubes 32 * 7 39 =
. ) , . X4 Lozenges 48 = 8 49 =
Chi - Square wi thout Bartlett’s Correction 9. 948300 ) _
Akai ke’s Information Criterion -14. 051700 §$ Egaﬁgagghoownpwrgtergg gé : ) gg ¥ ) 12
Schwar z’ s Bayesian Criterion -49,. 772505 X9 word Meani ng 77 « -8 24
Tucker and Lewis’s Reliability Coefficient 1. 016458 X10 Addi tion 40 * 55 -37 *
X12 Counting Dots 40 »* 72 * -6
. . X13 St rai ght - curved Caps 56 * 43 ~ 16
@ Hg : k = 3 is not rejected here g P
@ The x? test is highly dependent on sample size; other fit measures (later)




Example: Holzinger & Swineford 9 abilities data Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution, k=3 Decomposing the variance of each variable
Using the OUTSTAT= data set (communalities) and the reliabilities in the
PSYCH9 data set, we can decompose the variance of each variable...

. . Conmon Uni que Specific Error
Varimax rotated factor solution: Nane Reliability Variance Variance Variance Variance
Rotated Factor Pattern Vi sual Perception 0. 756 0.482 0.518 0.275 0. 244
Cubes 0.568 0.264 0.736 0.304 0. 432
Factorl Fact or 2 Factor3 Lozenges 0. 937 0. 475 0.525 0. 462 0. 064
Par agr aph Oorqnehen 0. 750 0. 760 0. 240 -0.010 0. 250
i i Sent ence Conpl et i on 0. 754 0.702 0.298 0. 052 0.246
ﬁ \&Eggl Perception %(l) 12 gg . Wrd Meaning 0. 870 0.677 0.323 0.193 0.130
Xa ) 21 Z 85 Addi ti on 0. 952 0.607 0.393 0. 345 0.048
0zenges Counting Dots 0. 937 0. 682 0.318 0. 256 0.063
§<75 gar ?gr aPhCOCO”Pr?he” gg * 1; ﬁ Strai ght-curved Caps  0.889 0.525 0. 475 0. 364 0.111
enence_npelon *
;80 X\g{j?t i'vgﬁn' ng Z? * 72 . 22 Assuming k = 3 factors: Verbal, Speed, Visual—
éi% gﬂlg} i ﬂ? (I:Dl(,l);[’\sled Cans 26 gg : Zg X @ Paragraph comprehension and Sentence completion are better measures
9 P of the Verbal factor, even though Word meaning is more reliable.

@ Addition and Counting Dots are better measures of Speed; S-C Caps
also loads on the Visual factor

@ Visual factor: Lozenges most reliable, but Visual Perception has greatest
common variance. Cubes has large specific variance and error variance.

Factor estimation methods Example: Holzinger & Swineford 9 abilities data
Interlude: Significance tests & fit statistics for EFA | Interlude: Significance tests & fit statistics for EFA I

@ Tucker-Lewis Index (TLI) : Compares the x?/df for the null model (k = 0)

@ As we have seen, ML solution — 2 = (N — 1)Fny, (large sample test) > X
to the x</df for a proposed model with k = m factors

@ Adding another factor always reduces x?, but also reduces df.

@ x?/df gives a rough measure of goodnegs-of-fit, taking # factors into TLI = (X(z)/dfo) - (Xﬁw/dfm)
account. Values of x?/df <= 2 are considered “good.” = (x2/dfo) — 1

@ Test Ax? = x4 — xZ.1 On Adf = dfy, — dfn.1 degrees of freedom 0/ =70

@ Pr(Ax?, Adf) tests if there is a significant improvement in adding one more
factor. @ Theoretically, 0 < TLI < 1. “Acceptable” models should have at least

@ Akaike Information Criterion (AIC): penalizes model fit by 2 x # free TLI > .90; "good” models: TLI > .95
parameters @ In CFA, there are many more fit indices. Among these, the Root Mean

Square Error of Approximation (RMSEA) is popular now.

AIC = x? + 2(# free parameters) = x? + [p(p — 1) — 2df]

(x?/df) -1

@ Bayesian Information Criterion (BIC): greater penalty with larger N RMSEA = N 1

BIC = x? + log N(# free parameters)
@ “Adequate” models have RMSEA < .08; “good’ models: RMSEA < .05.
@ AIC and BIC: choose model with the smallest values




Example: Holzinger & Swineford 9 abilities data

Comparing solutions

Collect the test statistics in tables for comparison...

Pr ob
k Test Chi Sq DF Chi Sq
0 HO: No common factors 483. 4478 36 <. 0001
1 HO: 1 Factor is sufficient 172. 2485 27 <. 0001
2 HO: 2 Factors are sufficient 61. 1405 19 <. 0001
3 HO: 3 Factors are sufficient 9. 5453 12 0. 6558
From these, various fit indices can be calculated...

di ff di ff Pr >

k Chi 2/ df Chi 2 DF di ff Al C BI C TLI
0 13. 4291 . . . . . .
1 6. 3796 311.199 9 0 123. 805 43. 433 0.5672
2 3.2179 111.108 8 0 25.416 -31. 142 0. 8216
3 0. 7954 51. 595 7 <. 0001 -14. 052 -49.772 1.0165

All measures agree on k = 3 factors!

Factor and Component Rotation

@ In multiple regression, you can replace the p regressors with a set of p
linear combinations of them without changing the R?.

dat a denp;
do i=1to 20

x1 = normal (0); x2 = normal (0); *- random data

y = x1 + x2 + nornal (0);

x3 = x1 + x2; x4 = x1 - x2; =«=- rotate 45 deg
out put ;

end;

proc reg data=deno;
nodel vy x1 x2
nodel y x3 x4;

Factor and component rotation

Factor and Component Rotation

@ The models using (x1, x2) and (x3, x4) both have the same R?:

R-square

St andar d
Error

0. 30603261
0. 37796755
0. 29270456

T fo

r HO:

Par anet er =0

-0.768
3. 046
3. 801

Root MSE 1. 36765

Par anet er

Vari able DF Estimat e
| NTERCEP 1 -0. 234933
X1 1 1.151320
X2 1 1.112546
Root MSE 1. 36765

Par anet er

Vari able DF Esti mat e
| NTERCEP 1 -0. 234933
X3 1 1.131933
X4 1 0. 019387

R-square

St andar d
Error

0. 30603261
0. 21980594
0. 25681328

Tfo

r HO:

Par anet er =0

-0.768
5. 150
0. 075

@ Similarly, in component (or factor) analysis, you can replace a set of
components by any (non-singular) set of linear combinations of them
without changing the variation accounted for.

@ This process is called rotation

Rotating Factor Solutions

@ Rotation does not affect the overall goodness of fit; communalities are
identical.

@ The need for rotation arises because factor solutions are interpreted
based on the size of loadings.

@ Rotated and unrotated solutions may differ greatly in interpretation
Ex: Political attitudes toward government policies:

Unr ot at ed Rot at ed

F1 F2 F1’ F2'
X1: spend nore on school s . 766 -.232 . 783 . 163
X2: reduce unenpl oyment 670 -.203 . 685 . 143
X3: control big business .574 -.174 . 587 . 123
X4: relax inmgration . 454 . 533 . 143 . 685
X5: minority job prograns . 389 . 457 . 123 . 587
X6: expand childcare . 324 . 381 . 102 . 489




Factor and component rotation Thurstone’s Postulates of Simple Structure Factor and component rotation Rotation methods: Overview

Simple structure Rotation methods
To make the interpretation of factors as simple as possible:
@ Each variable should have non-zero loadings on a small number of @ Purpose:
factors — preferably 1. @ Make the pattern (loadings) more interpretable
@ Each factor should have major loadings on only a few variables — the rest @ Increase number of loadings near 1, 0, or -1
near 0 @ — simple structure
' @ Only for EFA— in CFA, we specify (and test) a hypothesized factor structure
Unrotated directly.
Factor 2 . .
A Rotated @ Orthogonal rotatation — factors remain uncorrelated
Factor 1* @ Varimax tries to clean up the columns of the pattern matrix
/9“' T @ Quartimax tries to clean up the rows of the pattern matrix
Rotated o. .0 @ Equamax tries to do both
‘9 . . . .
v cos8 sin @ Oblique rotation — factors become correlated, pattern may be simpler
\‘\ e AL — | A |lsin0 cos® @ Promax — uses result of an orthogonal method and tries to make it better,
L 9’3 - allowing factors to become correlated.
I~ > o Crawford-Ferguson — a family of methods, allowing weights for row
R N Poronated parsimony and column parsimony.
. @ Before CFA, Procrustes (target) rotation was used to test how close you
@ could come to a hypothesized factor pattern.
o.
Analytic rotation methods Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution, k=3
Thes_e all attempt to reduce_z iQeas of “simple structure” to mathematical proc factor data=psych9
functions which can be optimized. Met hod=M_. NFact =3
. L . . round flag=.3
] Varl_ma_lx — Mlnlmlze complexity of each factor (# non-zero loadings) — out st at =FACT /= output data set for rotations */
maximize variance of each column of squared loadings. stderr . /* get standard errors */
o of = [Zi(A\5)? — (%iA5)/p]/p = variance of col j of squared loadings ; un;r otate=varimax; /+ varimax rotation x/

o Rotate pairs of cols. j, j/ to find angle to make o7 + o large _ _
o Repeat for all pairs of columns. Varimax rotated factor solution:

Rot at ed Factor Pattern

@ Orthomax — Minimize complexity of each variable.

@ Communality = h? = ij:l/\ﬁ = constant (unchanged by rotation) Factorl Fact or 2 Fact or 3
9 — minimize complexity by maximizing variance of squared loadings in each

oW X1 Vi sual Perception 20 19 64 *
' X2 Cubes 11 4 50 *
(h?)? = (53A0)% = A} +2(Em<nAinAfy) = constant X4 Lozenges 21 7 65 *
~ X6 Par agr aph Conpr ehen 84 * 7 23
max X7 Sent ence Conpl eti on 80 * 18 17
@ Equamax — Tries to achieve simple structure in both rows (variables) ﬁo X\g[j'dt Meani ng Ig * 72 22
ition * -
and columns (factors). %12 Counti ng Dot s 71 79 26

X13 Strai ght-curved Caps 20 52 = 47 *




Factor and component rotation Oblique rotations Factor and component rotation Oblique rotations

Oblique rotations Oblique rotations

@ Orthogonal factors are often unnecessarily restrictive; they arise purely

from mathematical convenience. When @ = |, there are two matrices which can be interpreted:

@ One can sometimes achieve a simpler structure in the factor loadings by
allowing the factors to be correlated. ﬁ_ Factr Pattern (J\> 7 Tochor S‘N-d‘we (r'>

@ For latent variables in a given domain (intelligence, personality,
depression), correlated factor often make more sense. x: X;
" w2
’//’I
A

¥ %
Pattern loading (A) _
\j = regression coefficient for x; Structure loading (I' = A®)
from factor ¢ 7 = correlation of x; with factor ¢

&

Oblique rotation methods Example: Holzinger & Swineford 9 abilities data

Promax rotation

@ Promax is the most widely used oblique rotation method

@ Does an initial varimax rotation
o Transform \; — )\ﬁ' : makes loadings closer to 0/1

_ _ For other rotations, use the OUTSTAT= data set from a prior run:
@ Oblique, least squares rotation to A® as target

title2 '"Promax rotation’;

@ Other oblique rotation methods include the Crawford-Ferguson family, proc factor data=FACT
m|n|m|z|ng Met hod=M. NFact =3

Round fl ag=.3

. : r ot at e=pr onex;

fce = €1 x row parsimony + ¢, x col parsimony run:

@ Many people try several rotation methods to see which gives most
interpretable result.




Factor and component rotation Oblique rotations Factor and component rotation Oblique rotations

Example: Holzinger & Swineford 9 abilities data Factor pattern:
Promax rotation - - —
Rot at ed Factor Pattern (Standardi zed Regressi on Coefficients)
Factor 1 Fact or 2 Fact or 3
Target matrix defined from initial Varimax: ,
X1 Vi sual Perception 5 7 64 *
The FACTOR Procedure X2 Cubes 0 -6 53 *
Rot ati on Met hod: Pronmax (power = 3) X4 Lozenges 7 -7 68 *
) ) X6 Par agr aph Conpr ehen 86 -3 5
Target Matrix for Procrustean Transformation X7 Sent ence Conpl etion 82 9 -3
X9 Word Meani ng 80 = -4 8
Factorl Fact or 2 Factor 3 X10 Addi tion 13 80 = -23
. X12 Counti ng Dots -14 79 * 15
X1 Vi sual Perception 3 2 83 X13 Strai ght-curved Caps 6 45 « 39 «*
X2 Cubes 1 0 100 =
X4 Lozenges 3 0 92 = ; .
X6 Par agr aph Conpr ehen 100 = 0 2 Factor correlations:
X7 Sent ence Conpl eti on 98 * 1 1 Inter-Factor Correlations
X9 Word Meani ng 97 = 0 3
X10 Addi tion 1 100 = 0 Factorl Factor 2 Factor3
X12 Counting Dots 0 93 = 3
X13 St rai ght-curved Caps 2 40 = 29 Factorl 100 = 27 45
Fact or 2 27 100 = 38
Fact or 3 45 38 = 100 =
Example: Holzinger & Swineford 9 abilities data Procrustes (target) rotations
Promax rotation
@ Before CFA, the way to “test” a specific hypothesis for the factor pattern
was by rotation to a “target matrix.”
Factor structure: _ @ We can specify a hypothesis by a matrix of 1s and Os, e.g.,
Factor Structure (Correl ations)
Factorl Fact or 2 Factor 3 i 8
X1 Vi sual Perception 36 * 32 * 69 =* B — 10
X2 Cubes 22 14 51 * 01
X4 Lozenges 36 * 21 68 * 0 1
X6 Par agr aph Conpr ehen 87 = 21 42 * 0 1
X7 Sengence Conpl etion 83 = 30 38 =
X9 Word Meani ng 82 = 20 42 * PR ; ; ~
%10 Addi tion o4 75 « 13 @ Procrustes rota’_uon. Find a transformation matrix T xk such that AT ~ B
X12 Counti ng Dot s 14 81 * 38 = (least squares fit)
X13 Strai ght - curved Caps 35 * 61 « o9 * @ If T is orthogonal (TT' = 1), this is an orthogonal Procrustes rotation
@ Usually TT' # | — oblique Procrustes rotation
@ Goodness of fit = sum of squares of differences, tr(AT — B)"(AT — B)




Factor and component rotation Procrustes rotations Factor and component rotation Procrustes rotations

Example: Holzinger & Swineford 9 abilities data

Procrustes rotation

Enter the hypothesized target as a matrix of 0/1 (transposed):

title2 'Procrustes rotation: 3 non-overl apping factors’;
dat a hypot hesi s;
input _nane_ X1 X2 X4 X6 X7 X9 X10 X12 X13;

|ist; datalines;

FACTOR1 1 1 1 0 0 0 O 0 o

FACTOR2 0O 0 01 1.1 0 0O
0O 0 00O OO 1 1 1

FACTOR3

proc factor data=FACT
r ot at e=procrust es
round flag=.3 PLOT;
run;

t ar get =hypot hesi s

Example: Holzinger & Swineford 9 abilities data

Procrustes rotation

Target matrix: Factor pattern:

Target Matrix for Procrustean Transfornation
Factorl Fact or 2 Fact or 3
X1 Vi sual Perception 100 * 0 0
X2 Cubes 100 = 0 0
X4 Lozenges 100 = 0 0
X6 Par agr aph Conpr ehen 0 100 = 0
X7 Sent ence Conpl etion 0 100 = 0
X9 Word Meani ng 0 100 = 0
X10 Addi tion 0 0 100 =
X12 Counting Dots 0 0 100 =
X13 Strai ght-curved Caps 0 0 100 =

Factor and component rotation Procrustes rotations

Factor pattern:

Rot at ed Factor Pattern (Standardi zed Regressi on Coefficients)
Factorl Fact or 2 Factor 3
X1 Vi sual Perception 61 * 3 15
X2 Cubes 52 -2 0
X4 Lozenges 66 = 5 1
X6 Par agr aph Conpr ehen 3 87 = -3
X7 Sent ence Conpl etion -5 83 * 9
X9 Word Meani ng 7 80 = -4
X10 Addi tion -29 13 80 *
X12 Counting Dots 9 -16 83
X13 St rai ght-curved Caps 34 4 51 =
Factor correlations:
I nter-Factor Correlations
Factorl Fact or 2 Fact or 3
Factorl 100 = 48 = 34 ~
Fact or 2 48 = 100 = 31 *
Factor 3 34 31 = 100 =

Factors are slightly more correlated here than in Promax

Factor Scores

@ Factor scores represent the values of individual cases on the latent factor
variables.

@ Uses: classification, cluster analysis, regression, etc. based on results of
factor analysis.
@ Factor scores (unlike component scores) cannot be computed exactly, but
must be estimated.
@ Reason: The unique factors (by definition) are uncorrelated with everything
else.
@ Therefore a linear combination of the variables cannot be perfectly
correlated with any common factor.

@ Most factor analysis programs (PROC FACTOR, LISREL, EQS) estimate
factor score coefficients by multiple regression, using the usual formula
for standardized regression coefficients:

Bpxk = (Rxx) 'Ryxe = R\




Factor Scores

@ The actual factor scores are obtained by applying the factor score
coefficients to the standardized scores, zj = (Xj — X;)/S;.

Wn><k = anpoxk

@ In SAS, use PROC SCORE:
PROC FACTOR DATA=nydat a
SCORE [+ produce factor scores =/
OQUTSTAT=f act ;

PROC SCORE DATA=mnydat a
SCORE=f act [* uses _TYPE =" SCORE obs =/
QUT=nyscor es;




