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Abstract

Visualizing Categorical Data presents a comprehensive overview of
graphical methods for discrete data— count data, cross-tabulated
frequency tables, and discrete response data. These methods are
designed to complement traditional numerical summaries and sta-
tistical models, expose patterns in the data, and to aid in diagnosing
model defects. They are illustrated with real data problems, and
implemented in a large collection of SAS macro programs avail-
able with the book.

A number of these methods are somewhat novel, and the macro
programs may take some effort to use effectively with your own
data. In this paper I present an overview of these methods and illus-
trate the use of the macro programs for graphic analysis to reveal
features of the data not apparent in traditional numerical summaries.
The goal is to translate ”theory into practice,” and enable readers to
use these techniques productively with their own data.

KEYWORDS: categorical data, graphics, mosaic displays, mo-
saic matrices, correspondence analysis, diagnostic plots, macros,
loglinear models, logistic regression.

1 Introduction

Over the last decade a modest revolution has been brewing in the
analysis of categorical data, as graphical methods and techniques
of data visualization, so commonly used for quantitative data, have
begun to be developed for frequency data and discrete data.

Visualizing Categorical Data (Friendly, 2000) completes the ini-
tial steps reported at SUGI 17 (Friendly, 1992). It presents a com-
prehensive overview of graphical methods for discrete data— count
data, cross-tabulated frequency tables, and discrete response data.
These methods are designed to complement traditional numerical
summaries and statistical models, expose patterns in the data, and
to aid in diagnosing model defects. They are illustrated with real
data problems, and implemented in a collection of nearly 40 general
macros and programs (see Appendix A) available with the book.

A number of these methods are somewhat novel, and the macro
programs, while flexible, and easy to use may take some effort
to use effectively with your own data. In this paper I present an
overview of these methods and illustrate the use of the macro pro-
grams for graphic analysis to reveal features of the data not apparent
in traditional numerical summaries. The goal is to translate ”theory
into practice,” and enable readers to use these techniques produc-
tively with their own data. (Most of the graphs are in color; see the
CD version of the Proceedings.)

2 Discrete distributions

Discrete frequency distributions often involve counts of occur-
rences such as accident fatalities, words in passages of text, births
of twins, events of terrorism or suicide, or blood cells with some
characteristic. Typically such data consist of a table which records
that nk of the observations pertain to the basic outcome value
k ; k = 0; 1; : : :.

For such data, we often wish to understand the process which
gives rise to these numbers, or to estimate frequencies for outcome
valuesk we did not observe. Both goals can be approached by ex-
amining how closely the data follow a particular discrete probabil-
ity distribution, such as the Poisson, the binomial, or the geometric
distribution.

Chapter 2: “Fitting and graphing discrete distributions” de-
scribes the properties of some of the most widely used discrete dis-
tributions (the binomial, Poisson, negative binomial, log-series and
geometric), along with SAS techniques for calculating and visual-
izing those distributions, as illustrated in Table 1 In some cases, we
may not knowwhich discrete distribution should be fit to a given
dataset; we describe simple graphical methods designed to deter-
mine an appropriate distribution type. A number of SAS macros to
simplify the fitting and graphing of discrete distributions are illus-
trated throughout the chapter.

For each of the main distributions, theGOODFIT macro estimates
parameters, and calculates fitted frequencies and goodness-of-fit
tests. TheROOTGRAM macro produces a variety of graphs, and the
DISTPLOT macro provides robust distribution and influence plots.
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Figure 1: Saxony data, with Binomial fit. Left: histogram; right:
hanging rootogram

We concentrate here on visualization methods for binomial dis-
tributions. For example, Geissler tabulated a huge dataset on sex
distributions in families in Saxony in the 19th century. Included
wereN = 6115 families withn = 12 children, which might rea-
sonably be expected to follow a Bin(12,p) distribution. The data are
input and fit, using theGOODFIT macro as shown below.
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Table 1: Some tasks for discrete distributions

Topic Task Program Examples
Binomial distribution Calculate, plot x2.2.1
Poisson distribution Calculate, plot x2.2.2

” Robust diagnosis POISPLOT 2.14
” Leverage, influence plots POISPLOT 2.14

Neg. Bin. distribution Calculate, plot x2.2.3
Discrete distributions Fit model GOODFIT 2.7, 2.8

” Fit, as loglinear model Genmod 2.11
” Estimate model parameters GOODFIT 2.7, 2.8
” Plot observed, fitted frequencies ROOTGRAM 2.9, 2.10
” Diagnose model form ORDPLOT 2.12, 2.13
” Robust diagnosis DISTPLOT 2.15

title 'Number of males in 6115 families in Saxony';

data saxony;

do males = 0 to 12;

input families @;

output;

end;

label males='Number of males'

families='Number of families';

cards;

3 24 104 286 670 1033 1343 1112 829 478 181 45 7

;

%goodfit(data=saxony,var=males,freq=families,dist=binomial);

2.1 Hanging rootograms

Discrete frequency distributions are often graphed as histograms,
with a theoretical fitted distribution superimposed. Figure 1 (left),
for example, shows the data together with the fitted frequencies un-
der a Binomial model. It is hard to compare the observed and fitted
frequencies visually, because (a) we must assess deviations against
a curvilinear relation, and (b) the largest frequencies dominate the
display.

The hanging rootogram (Tukey, 1977) solves these problems by
(a) shifting the histogram bars to coincide with the fitted curve, so
that deviations may be judged by deviations from a horizontal line,
and (b) plotting on a square-root scale, so that smaller frequencies
are emphasized. Figure 1 (right) shows more clearly that the ob-
served frequencies differ systematically from those predicted under
a Binomial model. TheROOTGRAM macro produces a variety of dis-
plays like those in Figure 1 For example, the right panel is produced
with the statement

%rootgram(data=fit, var=males, obs=families, exp=exp);

2.2 Robust distribution plots

While �2 tests provide an overall measure of goodness-of-fit, they
do not reveal the departure is systematic or confined to a single
discrepant frequency. Robust distribution plots, following meth-
ods described by Hoaglin and Tukey (1985), are provided by the
DISTPLOT macro.

Figure 2 shows the Binomial distribution plot, produced using
theDISTPLOT macro, as follows:

%distplot(data=saxony, count=males, freq=families,

dist=binomial);

slope(b) = 0.069
intercept= -8.410

p:      mean/n = 0.519
   e(b)/1+e(b) = 0.517

C
o

u
n

t 
m

e
ta

m
e

te
r

-10

-9

-8

-7

-6

Number of males
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: Robust distribution plot for Saxony data

This plot has the property that the circled points are linear ink when
the data follow the assumed distribution. However, the ordinate
“count metameter” depends only onnk, and the confidence bars are
calculated to take into account the variability of individual counts,
nk, in the observed distribution.

3 Contingency tables

Chapters 3–5 provide a wide variety of facilities for the analysis
and visual display of contingency tables, some of which are shown
in Table 2

Chapter 3: “Two-way contingency tables” presents methods
of analysis designed mainly for two-way tables of frequencies (con-
tingency tables), along with graphical techniques for understanding
the patterns of associations between variables. Different specialized
displays are focused on visualizing an odds ratio (a fourfold display
for 2 � 2 tables), or the general pattern of association (sieve dia-
grams), the agreement between row and column categories (agree-
ment charts), and relations inn� 3 tables (trilinear plots).

Chapter 4: “Mosaic displays for n-way tables” introduces the
mosaic display, a general method for visualizing the pattern of asso-
ciations among variables in two-way and larger tables. Extensions
of this technique can reveal partial associations, marginal associ-
ations, and shed light on the structure of loglinear models them-
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Table 2: Some tasks for contingency tables

Topic Task Program Examples
2� 2 tables Visualize odds ratio FOURFOLD 3.8
2� 2� k tables Visualize odds ratios FOURFOLDx3.4.3

” Homogeneity of association FOURFOLD 3.9
r� c tables Display observed, expected frequencies SIEVE 3.10, 3.11

” Measures of association Freq 3.5
” Use ordinal variables Freq x3.2.4
” Control for other variable(s) Freq 3.6
” Homogeneity of association Freq 3.7
” Fit independence model MOSAIC 4.1
” Visualize association MOSAIC 4.1

square tables Visualize agreement AGREE 3.15
” Fit quasi-independence MOSAIC 4.3

r� 3 tables Trilinear plots TRIPLOT 3.16–3.18
three-way tables Fit, visualize models MOSAIC x4.3.1
n-way tables Fit, visualize models MOSAIC 4.4, 4.5

” Test, visualize partial association MOSAIC 4.6
” Visualize all pairwise association MOSMAT 4.7, 4.8
” Visualize conditional associations MOSMAT 4.7, 4.8
” Visualize loglinear structure MOSMAT x4.5

selves.
Chapter 3: “Correspondence analysis” discusses correspon-

dence analysis, a technique designed to provide visualizations of as-
sociations in a two-way contingency table in a small number of di-
mensions. Multiple correspondence analysis extends this technique
to n-way tables. Other graphical methods, including mosaic matri-
ces and biplots provide complementary views of loglinear models
for two-way andn-way contingency tables.

3.1 Fourfold displays

For 2 � 2 (and2 � 2 � k) tables, the focus is often on the odds
ratio as a measure of association. The fourfold display is designed
to display such data, indicating the direction and significance of as-
sociations. It includes confidence rings, having the property that the
rings for adjacent segments overlap when no significant association
is shown.

We consider here some data from Gilovich et al. (1985) on the
topic of a “hot-hand” in basketball, i.e., whether a player given two
free-throws is more likely to have a “hit” following a first hit than
following a first miss. The data come from 9 players on the Boston
Celtics in the 1980–1982 seasons.

Figure 3 shows the aggregate data. There is a strongly positive,
and significant association between first- and second-shot hits, sup-
porting the hot-hand notion. However, the aggregate data are mis-
leading, because collapsing over players assumes that all players
get equal chances at free-throws, and they are all equally accurate,
overall.

Figure 4 shows the individual data, with the players sorted by
their odds ratio of having a second hit, given their first shot was a
hit. In all cases, the confidence rings overlap, indicating no associ-
ation between first- and second-shot accuracy.

These plots are produced by theFOURFOLD program and the as-
sociated macro,FFOLD, which provides a simpler interface to the
SAS/IML program. The printed output includes significance tests
for individual odds ratios, and tests of homogeneity of associa-
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Figure 3: Fourfold display for hot hand data, aggregated over play-
ers

tion (here, over players) and conditional association (controlling for
players).

For example, the plot of the individual data is produced as fol-
lows (omitting steps to sort the player by odds ratio).

data hothand;

input first $ second $ @;

do player ='LB', 'CM', 'RP', 'NA', 'CF',

'KM', 'MC', 'RR', 'GH';

input count @;

output;

end;

cards;

Hit Hit 251 245 164 203 36 93 39 54 77
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Figure 4: Fourfold display for hot hand data, by player

Hit Miss 34 57 49 42 15 35 18 37 24

Miss Hit 48 97 76 62 17 29 21 49 29

Miss Miss 5 31 29 14 5 20 5 31 8

;

%ffold(data=hothand, var=First Second, by=Player,htext=3);

To plot the aggregate data, we must first sum the data over players,
which is done using theTABLE macro.

%table(data=hothand, out=hot2, var=first second,

order=data, weight=count);

%ffold(data=hot2, var=First Second,

ptitle=Hot hand: Aggregate data);

3.2 Mosaic displays

The mosaic display, proposed by Hartigan and Kleiner (1981) is
a graphical method to show the values (cell frequencies) in a con-
tingency table cross-classified by one or more “factors”. As ex-
tended to show both the data, and residuals from a log-linear model
(Friendly, 1994), it has become a primary graphical tool for visual-
ization and analysis of categorical data in the form of contingency
tables. In each case, a loglinear model is fit to the data, and the sign
and magnitude of residuals in the model are shown by color and
shading (blue for positive, red for negative, color intensity� mag-
nitude). The pattern of residuals show thenature of associations,
and help suggest a more adequate model.

Some examples are shown in Figure 5, for a two-way and in
Figure 6 for a three-way table, showing the relations among the
categories of hair color, eye color and sex in a sample of individuals.
The two way display fits the model of independence; the residuals
show, however, that people with dark hair are more likely to have
dark eyes, while people with light hair tend to have light eyes. The
three-way display fits the model[HairEye] [Sex], asserting that the
combinations of hair color and eye color are independent of sex; the
residuals show that this is largely true, except for blue-eyed blonds,
where the proportion of females is significantly greater.
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Figure 5: Mosaic display for frequencies of hair color, eye color
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Figure 6: Mosaic display for frequencies of hair color, eye color
and sex

Like the FOURFOLD program, MOSAICS is a SAS/IML pro-
gram with a wide variety of options and features. It may be used
directly within SAS/IML, or more easily through an associated
macro,MOSAIC. For example, both Figure 5 and Figure 6 are pro-
duced using one call to theMOSAIC macro:

%include catdata(hairdat);

%mosaic(data=haireye, vorder=Hair Eye Sex, plots=2:3,

htext=1.75, cellfill=dev);

TheVORDER parameter specifies the order of variables in the series
of mosaics;PLOTS=2:3 produces plots of the two- and three-way
tables;CELLFILL=DEV prints the value of the standardized residual
in each shaded cell.
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Mosaic displays easily generalize ton-way tables, and their great
benefit is the ability to find adequate descriptive models for complex
tables visually, rather than from tables of parameter estimates.

For example, Figure 7 shows two models fit to data on the re-
lationships pre-marital sex, extra-marital sex, gender, and marital
status. The left panel fits the base model[GPE] [M], which says
that marital status is independent of all the other variables. the
pattern of residuals indicates associations of both pre-marital sex
and extra-marital sex with marital status, giving the model[GPE]
[PEM], which fits satisfactorally.

Men          Women        

P
re

 S
e

x
: 

N
o

  
Y

e
s
  

  
  

  
  

Extra Sex: No Yes          

D
iv

o
rc

e
d

  
  

 
M

a
rr

ie
d

  
  

  

Model (GenderPreExtra)(Marital)

Men          Women        

P
re

 S
e

x
: 

N
o

  
Y

e
s
  

  
  

  
  

Extra Sex: No Yes          

D
iv

o
rc

e
d

  
  

 
M

a
rr

ie
d

  
  

  

Model (GPE, PEM)

Figure 7: Four-way mosaic for marital status data. Left: model
[GPE] [M]; right: model[GPE] [PEM]

3.3 Mosaic matrices
Themosaic matrix is a discrete analog for multivariate categorical
data of the scatterplot matrix (Friendly, 1999). Like the scatterplot
matrix, it contains allp(p�1) pairwise plots for ap-variate dataset,
but displays the relation of each pair of variables by a mosaic. Ex-
tensions of this idea include: (a) a conditional mosaic matrix, which
fits a model of conditional independence between each row and col-
umn, controlling for one or more of the other variables—a gener-
alization of partial regression plots, (b) mosaic displays of partial
association, stratified by one or more variables—a discrete analog
of coplots or Trellis displays.

Figure 8 shows the bivariate marginal relations among all pairs
of variables in the marital status data, produced with theMOSMAT

macro, as follows:

%include catdata(marital);

%mosmat(data=marital, var=Gender Pre Extra Marital,

vorder=Marital Extra Pre Gender, devtype=LR ADJ);

Viewing Gender, Premarital sex and Extramarital sex as explana-
tory, and Marital status as the response, the mosaics in row 1 (and
in column 1) shows how marital status depends on each predictor
marginally. The remaining panels show the relations within the set
of explanatory variables.

Thus we see (row 1, column 4) that marital status is independent
of gender, by design of the data collection. In the (1, 3) panel, we
see that reported premarital sex is more often followed by divorce,
while non-report is more prevalent among those still married. The
(1, 2) panel shows a similar, but stronger relation between extra-
marital sex and marriage stability. These effects pertain to the asso-
ciations of P and E with marital status—the terms [PM] and [EM]
in a loglinear model.

Among the background variables, the (2, 3) panel shows a strong
relation between premarital sex and subsequent extramarital sex,
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Figure 8: Mosaic matrix for marital status data. Each panel shows
the bivariate marginal association.

while the (2, 4) and (3, 4) panels show that men are far more likely
to report premarital sex than women in this sample, and also more
likely to report extramarital sex.

3.4 Correspondence analysis
Correspondence analysis is an analog of principal components anal-
ysis for frequency data, designed to display the association among
categorical variables in a small number of dimensions, designed to
account for the largest proportion of the Pearson�2. Multiple cor-
respondence analysis extends this method ton-way tables, but dis-
plays only bivariate associations, analogous to the (marginal) mo-
saic matrix.
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Figure 9: 2D multiple correspondence analysis display for marital
status data

Figure 9 shows the 2D MCA solution for the marital status data.
This graph was prepared by theCORRESP macro as follows:

%corresp(data=marital, tables=gender pre extra marital,

weight=freq, options=mca, interp=vec, inc=1, pos=-,

symbols=dot);
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The macro uses theCORRESP procedure for the calculations, but
extends it with extensive facilities for easily visualizing the results.

4 Logistic regression & Loglinear models

The final two chapters turn to model-based methods for the analysis
of discrete data, where the emphasis is more on confirmatory testing
than on data exploration.

Chapter 6: “Logistic regression” introduces the model-
building approach of logistic regression, designed to describe the
relation between a discrete response, often binary, and a set of ex-
planatory variables. Smoothing techniques are often crucial in vi-
sualizations for such discrete data. The fitted model provides both
inference and prediction, accompanied by measures of uncertainty.
Diagnostic plots help us to detect influential observations which
may distort our results.

Chapter 7: “Loglinear and logit models” extends the model
building approach to loglinear and logit models. These are most
easily interpreted through visualizations, including mosaic displays
and plots of associated logit models. As with logistic regression,
diagnostic plots and influence plots help to assure that the fitted
model is an adequate summary of associations among variables.

4.1 Plotting binary response data

It is sometimes difficult to understand how a binary response can
give rise to a smooth, continuous relationship between the predicted
response and an explanatory variable, particularly when the pre-
dictor is continuous. It is helpful, therefore, to plot the observed
sample probabilities (or logits) againstX, together with the obser-
vations (in a way which avoids overplotting), and the fitted rela-
tionships, as we do in Figure 10 for data on treatment outcome for
arthritis patients.

E
s
ti
m

a
te

d
 P

r
o

b
a

b
il
it
y

0.0

0.2

0.4

0.6

0.8

1.0

AGE
20 30 40 50 60 70 80

Figure 10: Empirical probability plot for arthritis data.

In this figure the observed responses are shown by stacked points
at the top and bottom, and summarized by sample probabilities in
10 intervals; the solid line shows the predicted probability of im-
provement as a function of age, and the irregular curve is a lowess
smooth of the sample probabilities. Such plots are produced by the
LOGODDS macro,

%logodds(data=arthrit, x=Age, y=Better, smooth=0.5);

For more complex models, it is often easier to interpret model
results from plots of predicted log-odds or probabilities than from
estimated parameter values. Figure 11 shows plots of fitted logits
with standard error bars for the arthritis data, fitting a models with
main effects for Age, Sex, and Treatment. A probability scale at the
left allows interpretation in terms of probabilities.
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Figure 11: Estimated logits for sex, treatment and age. Correspond-
ing probabilities of a “better” response are shown on the right scale.

4.2 Influence and diagnostic plots
A variety of diagnostic plots for logistic regression, designed to
identify observations which have undue impact on the fitted model
are provided by theINFLOGIS macro. An analogous macro,
INFLGLIM provides similar plots for any generalized linear model
which may be fit withPROC GENMOD.

One quite useful plot shows the estimated change in the�2

against the “hat” value measure of leverage, using the discrete ana-
log of Cook’s D as the size of a bubble symbol. For example, the
INFLOGIS macro may be used as follows to give Figure 12.

%inflogis(data=arthrit,

y=better, x=_sex_ _treat_ age, id=id,

gy=DIFCHISQ, gx=HAT); /* graph y, x */
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Figure 12: Changes in chi-square vs. leverage. Possibly influential
cases are labeled by ID number.

Other diagnostic plots for logistic models include partial resid-
ual plots, added variable and constructed variables plots (ADDVAR

macro).

4.3 Loglinear and logit models
Whereas logit models focus on the prediction of one response fac-
tor, loglinear models treat all variables symmetrically, and attempt
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to model all important associations among them. Both types of
models are most easily understood through visualizations, includ-
ing mosaic displays and plots of associated logit models, provided
with the CATPLOT macro. As with logistic regression, diagnostic
plots and influence plots help to assure that the fitted model is an
adequate summary of associations among variables.
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Figure 13: Mosaic display for Berkeley admissions data

TheMOSAIC macro fits loglinear models, but it may also be used
to visualize the results of models fit usingPROC GENMOD. For exam-
ple, Figure 13 displays the residuals of the model[AD][DG] fit to
data on admission to graduate school at Berkeley classified by ad-
mission (A), department (D) and gender (G). Figure 13 is produced
as follows:

proc genmod data=berkeley;

class dept gender admit;

model freq = admit|dept gender|dept /

dist=poisson obstats residuals;

make 'obstats' out=obstats;

data obstats;

merge berkeley obstats;

%mosaic(data=obstats, vorder=Admit Gender Dept,

count=freq, resid=streschi, cellfill=dev,

title=Model: [AdmitDept] [GenderDept]);

This plot indicates that the model[AD][DG] fits well, except in
Dept. A.

Because admission may be considered as a response, all loglin-
ear models may be recast as an equivalent logit model. For example,
the model[AD][DG][AG] is equivalent to

logit (Admit) = �+ �
Dept
i + �

Gender
j : (1)

That is, the logit model (1) asserts that department and gender have
additive effects on the odds of admission. This model may be fit
with PROC CATMOD,

proc catmod order=data data=berkeley;

weight freq;

response / out=predict;

model admit = dept gender / ml noiter noprofile ;

and the fitted logits plotted with theCATPLOT macro. ThePSCALE
macro supplies an Annotate dataset to draw a probability scale at
the right.

%pscale(lo=-4, hi=3, anno=pscale);

title 'Model: logit(Admit) = Dept Gender'

a=-90 'Probability (Admitted)' h=3.5 a=-90 ' ';

axis1 order=(-3 to 2) offset=(4)

label=(a=90 'Log Odds (Admitted)');

axis2 label=('Department') offset=(4);

symbol1 i=none v=circle h=1.7 c=black;

symbol2 i=none v=dot h=1.7 c=red ;

%catplot(data=predict, xc=dept, y=_obs_, class=gender,

type=FUNCTION, z=1.96, anno=pscale);
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Figure 14: Observed (points) and fitted (lines) log odds of admis-
sion in the logit model corresponding to [AD][AG][DG]. The error
bars show individual 95% confidence intervals around each fitted
logit.

The effect of gender is very small and non-significant, implying
that the simpler model,logit(Admit) = �+ �Di is adequate, as we
saw in Figure 13.

4.4 Diagnostic plots
Influence plots for loglinear models are provided by theINFLGLIM

macro. TheHALFNORM macro gives half-normal plots of the residu-
als from any generalized linear model. A simulated envelope, cor-
reponding to an approximate 95assessment of whether the distribu-
tion of residuals corresponds to a good-fitting model.

We obtain an influence plot of adjusted Pearson residuals against
hat values, showing Cook’s D by bubble size, by

%inflglim(data=berkeley, class=dept gender admit, id=cell,

resp=freq, model=admit|dept gender|dept, dist=poisson,

gx=hat, gy=streschi);

The plot clearly identifies the four deviant cells corresponding to
Dept. A. Finally, we show a half-normal plot for this model in
Figure 16, produced with theHALFNORM macro,

%halfnorm(data=berkeley, class=dept gender admit, id=cell,

resp=freq, model=dept|gender dept|admit, dist=poisson);

5 Other tools

In working with categorical data and making many custom graphs,
a number of general tools for manipulating categorical data and an-
notating graphs were developed. Among these, theTABLE macro
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Figure 15: Influence plot for Berkeley admissions data, Model
[AD][GD]. Bubble areas are proportional to Cook’s D.
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Figure 16: Half-normal residual plot for Berkeley admissions data,
Model [AD][GD]

has been invaluable in collapsing, recoding or reordering the levels
of discrete variables in data sets, and theSORT macro generalizes
the idea of sorting to include sorting a data set according to the
values of a user-specified format, or by the values of any summary
statistic computed byPROC UNIVARIATE.

On the graphic side, I often found myself annotating graphs with
points, lines, error bars, and point labels. It annoys me to code the
same steps repeatedly, so a variety of utility macros for these tasks
were developed. Likewise, a general macro,PANELS, for arranging
any number of individual graphs in a rectangular array is provided.

As stated at the outset, my goal in writingVCD was to make
it easy for people to apply these methods for graphical analysis of
categorical to their own data, turning “theory into practice”.

A Macros and Programs

The following macros and programs are described and illustrated
in VCD. All require SAS/STAT and SAS/GRAPH; many re-
quire SAS/IML. They are available atwww.math.yorku.ca/SCS/
vcd/.

ADDVAR Added variable plots for logistic regression
AGREE Observer agreement chart (SAS/IML)
BIPLOT Generalized biplot displays

CATPLOT Plot results fromPROC CATMOD

CORRESP PlotPROC CORRESP results
DISTPLOT Plots for discrete distributions
DUMMY Create dummy variables
FOURFOLD Fourfold displays for2� 2� k tables (SAS/IML)
GOODFIT Goodness-of-fit for discrete distributions
HALFNORM Half-normal plots for generalized linear models
INFLGLIM Influence plots for generalized linear models
INFLOGIS Influence plots for logistic regression
LAGS Calculate lagged frequencies for sequential analysis
LOGODDS Plot empirical logits for binary data
MOSAIC Mosaic displays (macro)
MOSAICS SAS/IML modules for mosaic displays
MOSMAT Mosaic matrices (macro)
ORDPLOT Ord plot for discrete distributions
PANELS Arrange multiple plots in a panelled display
POISPLOT Poissonness plot
POWERLOG Power calculations for logistic regression
POWERRxC Power calculations for two-way frequency table
POWER2x2 Power calculations for a2� 2 table
ROBUST Robust fitting for linear models
ROOTGRAM Hanging rootograms
SIEVE Sieve diagrams (SAS/IML)
SORT Sort a dataset by a statistic or formatted value
TABLE Construct a grouped frequency table, with recoding
TRIPLOT Trilinear plots forn� 3 tables
Utility Graphics utility macros: BARS, EQUATE, GDISPLA,

GENSYM, GSKIP, LABEL, POINTS, PSCALE.
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