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 Michael Friendly, York University

 Abstract effects greatly outweigh the marginal costs of data collection.

This paper describes a simulation-based course project I have used  Section 2 describes the key pedagogical features of the project.
for some years in an intermediate-level undergraduate course in The third section of the paper gives additional details and describes
regression and experimental design. The project is designed to how the project is implemented. Section 4 summarizes some results
simulate the statistical and the practical issues in real research in as of the student's work on this project.
many ways as possible, within the constraints of conducting the
project in a large class. The student's task is to design, execute, and
analyze one or more studies of a substantively real experiment.  2. Project Features
“Data collection” consists of specifying the number of groups,
factor levels, and number of observations per group. The student The course project has the following key features, designed to
runs a (hidden) SAS program, which supplies the student with data create a credible microworld for the design of experiments:
simulated from a model known only to the instructor. Each student
is given a “research budget”, each experiment has associated costs, • A real experimental context
and students are rewarded for each correct statistical decision. The • A true, but unknown model
design of the project thus requires the student to balance the • Data collection by design specification
efficiency and costs of data collection against the precision of • Incentive to balance costs against precision
estimation and power of hypothesis tests. The paper details the • Opportunities for new discoveries
pedagogical features which support this design, describes how they • Learning from replication
are implemented, and summarizes the results of students work over
a number of years with this project. These features are described below.

A real experimental context
 1. Introduction

In actual experiments investigators rely upon past experience,
For students learning experimental design and analysis of variance, knowledge of the literature, pilot studies, and laboratory lore in
one of the most difficult skills is that of integrating theory with the determining experimental procedures, the levels of experimental
practical constraints that arise in real experimental situations. The factors and sample sizes for a proposed experiment. In the course
ideas of relative efficiency of one design compared to another, and project, we describe a potentially real experimental context,
of power analysis and sample size planning can be covered in including facts about the research situation generally believed to be
lectures and assignments. While students may learn to apply the true, the factors which may be manipulated, and details of the data
techniques perfectly to textbook problems, their understanding of collection process. The description of the research setting offers
the interplay between experimental design and data analysis may be clues to the nature of some of these effects, as a partial substitute
quite minimal. It is one thing, for example, to calculate the sample for knowledge of the literature and past experience.
size required to give a specified power when all the necessary
information is given in a problem statement, but quite another to be  The research context involves three possible experimental
able to use the results of a pilot study for the same purpose, or to factors, two of which are quantitative. Students run one or more
use judgment to balance power analysis against the costs of pilot studies to determine which of the seven main effects and
experimentation. interactions appear to have non-null effects and to select the levels

of the independent variables and sample sizes for their main study.
 This paper describes a course project I have used for some The research situation is as follows:
years in an intermediate-level experimental design course. The

 You have set up a small statistical consulting business,project is designed to simulate the statistical and the practical issues
specializing in research design and analysis. A psychologist, Dr.in real research in as many ways as possible, within the constraints
John Thomas, who is studying animal learning, comes to you withof conducting the project in a large class (50 - 75 students). Each
the following problem:student is given a “research budget” to use to design and conduct

experiments. Each experiment has a set of costs associated with it.  Starting with the work by Duncan (1949) a long series of studies
There is a specified cost for each new experimental design, for each have shown that electroconvulsive shock (ECS) given to an animal
treatment group, and for each observation. Running the experiment soon after learning a maze interferes with performance on the task,
yields data simulated from a model known only by the instructor. when the animal is tested the next day (after recovery from the
Not only does each student receive different data, but the true effects of the shock). The usual sequence of events in an

experiment is shown in Figure 1. Moreover, the shorter the timeexperimental effects differ from student to student. The
interval (DELAY) between the learning experience and the shock,experimental context is that of a three-factor design, and the student
the greater is the disruption in performance that appears on thereceives a “fee” for each effect (main effect or interaction) which
subsequent test. Thus, the usual effects of ECS produce low scoreshe or she correctly identifies as being present or absent.
at short delay intervals, and increasing scores as the interval
increases, up to a time of one hour.

 Thus, the students are directly motivated to try to discover as
much about the nature of the effects in their data while trying to  The usual explanation for this phenomenon is that whatever is
control the costs of data collection. The payoffs for the projects, learned by the animal in the maze requires some time to consolidate.
however, are designed so that the rewards for discovering true When ECS is given shortly after learning, the memory trace has not
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yet consolidated, and is disrupted by the shock. The longer the data design;
DELAY between learning and ECS, the less the memory trace can  run=0; * pilot study;
be disrupted.  nobs=4; * observations per group;

 input task $ dose delay;
——————————————————————————————

cards;
EASYMAZE 0 0+-------+ +---+ +--------+
EASYMAZE 0 60| learn | <-DELAY-> |ECS| <-recovery-> | retest |
EASYMAZE 3 0| MAZE | +---+ +--------+
EASYMAZE 3 60+-------+

 | adrenaline | HARDMAZE 0 0
 +-- DOSE given get SCORE -+ HARDMAZE 0 60

HARDMAZE 3 0
Figure 1: The John Thomas study, experimental procedure HARDMAZE 3 60

;——————————————————————————————
%GETDATA;

 However, Dr. Thomas believes that that the effects of ECS can
The last line, %GETDATA, invokes a SAS macro program whichbe reduced by administering adrenaline to the animal before the
reads the student's DESIGN data set and generates the data for thatlearning task. He asks you to help him design and analyse an

experiment to help study the effects of adrenaline on ECS in a maze student, storing the results in a permanent SAS data set, called
learning task. The following factors are to be studied. PROJECT.RUN0. The program produces a printed summary of the

study design (Figure 2) and a printed listing of the generated data
1. DOSE - Amount of adrenaline given. Allowable doses are in the (Figure 3).
 range 0 - 30 mg/kg body weight in steps of 10 mg/kg; 0 = control
 condition.

 John Thomas ECS Study
 RUN: 02. DELAY - The time interval between learning and administration of
 Levels: 2,2,2 (Delay,Dose,Task) ECS (0 - 60 min). Your design may include any number of DELAY
 Run on: Tuesday, August 13, 1991 at 16:38:49 values within this range.
 For: YSPY7429 (Userid: 7429)

3. TASK - There are two mazes which can be used in this study: An  
 easy maze with only a few blind alleys, and a hard maze. In the  GROUP DELAY DOSE TASK NOBS
 study, these are referred to as 'EASYMAZE' and 'HARDMAZE'.  
 The main reason for including two mazes in the study are to  1 0 0 EASYMAZE 4
 determine whether the effects of DOSE of adrenaline and DELAY

 2 60 0 EASYMAZE 4 of ECS differ in the two types of maze.
 3 0 3 EASYMAZE 4
 4 60 3 EASYMAZE 4A true, but unknown model
 5 0 0 HARDMAZE 4
 6 60 0 HARDMAZE 4The project is unlike real research in one fundamental way: since
 7 0 3 HARDMAZE 4the data are simulated, the true effects of all factors being studied is
 8 60 3 HARDMAZE 4known, so each statistical decision made is either correct or
 ----incorrect. Each unique experimental run by a student results in a
 Total observations 32unique random sample from populations with these given effects.

For a particular student, these true effects are the same across all
Your data have been saved in PROJECT.RUN0experimental runs. However, the true effects in the data differ from

one student to the next. Thus, although students may share general
The cost of data collection is $17.00problem-solving strategies with each other (and they are

encouraged to do so), the possibility of collusion is effectively
Figure 2: Summary sheet for sample experimental runruled out.

 For more complex designs, the student can use SASData collection by design specification
programming statements to construct the DESIGN data sets. A
5 × 4 × 2 design, with 5 observations per cell, for example, isIn the course students use the SAS System on the IBM VM/CMS
specified by these statements:mainframe extensively throughout the year for all their

assignments. As a result, the project is designed so that all their
data DESIGN;“data collection” and analysis uses the SAS System as well. So
 run =1; * main study;that students could focus on designing the experiment, the project is
 nobs=5;arranged so that the student's design for an experimental run takes
 do DELAY= 0 to 60 by 15 ;the form of a SAS dataset (called DESIGN), which is to contain one
 do DOSE = 0 to 3;observation for each treatment group. The variables DOSE, DELAY,
 do TASK = 'EASYMAZE','HARDMAZE';and TASK in this dataset specify the levels of the factor variables
 output;and NOBS specifies the number of observations requested for that
 end;treatment combination. An additional variable, RUN, with values
 end;0--2, is used to indicate if the experiment is a pilot study (RUN=0),
 end;the main study (RUN=1), or the replication (RUN=2). An example of
%GETDATA;a DESIGN data set, for a 2 × 2 × 2 design, with NOBS=4

observations per cell is shown below, in the form it might be
 There are two practical implications of this arrangement forspecified by a student.
students' data collection. First, there are no new technical skills for
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 As you can see, Dr. Thomas is a firm believer in the power of———————————————————————————
reinforcement to influence behavior, including yours. To give you
added incentive, he promises to pay you $200 for each correct Generated data from your Design

 GROUP SUBJ DELAY DOSE TASK LOG SCORE statistical decision, plus a $200 bonus for each new fact you discover
 (beyond the usual ANOVA results), or for promising leads you
 1 1 0 0 EASYMAZE DH 0 provide for future research.
 1 2 0 0 EASYMAZE 2
 1 3 0 0 EASYMAZE 0

Students are initially apprehensive about this aspect of the project. 1 4 0 0 EASYMAZE 23
They worry about making mistakes and it is easy for them to see 2 1 60 0 EASYMAZE 105

 2 2 60 0 EASYMAZE EI 117 the budget dwindle, but hard to know whether their conclusions are
 2 3 60 0 EASYMAZE 144 correct. In order to partially allay these concerns, students are
 2 4 60 0 EASYMAZE 144

given a three-week trial period to become familiar with the data- 3 1 0 3 EASYMAZE 108
collection process. During this time, up to two pilot studies may be 3 2 0 3 EASYMAZE 154

 3 3 0 3 EASYMAZE 157 conducted without cost. In addition, the effect sizes for non-null
 3 4 0 3 EASYMAZE 131 effects in each students data are set so that most students should be
 4 1 60 3 EASYMAZE 227

able to conduct their data collection well under-budget. 4 2 60 3 EASYMAZE 170
 4 3 60 3 EASYMAZE 226
 4 4 60 3 EASYMAZE 138 Opportunities for new discoveries
 5 1 0 0 HARDMAZE 16
 5 2 0 0 HARDMAZE 66

The project, as described above, is quite challenging. There are 5 3 0 0 HARDMAZE 0
seven main effects and interactions to be investigated, and students 5 4 0 0 HARDMAZE 85

 6 1 60 0 HARDMAZE 118 must design a series of pilot studies to explore the factor space,
 6 2 60 0 HARDMAZE SA 166 gauge the size of effects, and use power calculations to plan the
 6 3 60 0 HARDMAZE 150 design and sample size for their main experiments. 6 4 60 0 HARDMAZE 106
 7 1 0 3 HARDMAZE 53
 7 2 0 3 HARDMAZE 105  Nevertheless, I have found it useful to provide the opportunity
 7 3 0 3 HARDMAZE 91 for some students to go beyond the standard design and analysis
 7 4 0 3 HARDMAZE 79 tasks that are required by the foregoing. There is a good deal of 8 1 60 3 HARDMAZE EE 127

emphasis in the course on exploratory data analysis, graphical 8 2 60 3 HARDMAZE 129
 8 3 60 3 HARDMAZE 158 display and methods for detecting influential observations or
 8 4 60 3 HARDMAZE 160 outliers. So it seemed natural to add some potential outliers to the

data as “new facts” which students could discover. The project
Figure 3: Data listing for a sample experimental run. The data instructions include the following:
 set is generated for the 8-group design shown in Figure
 2. The dependent (response) variable is SCORE. The On the basis of past experience, Dr. Thomas estimates that
 entries in the LOG column are described in a following approximately 4-6% of scores have more than the usual amount of

what he calls 'slop' in them, owing to a variety of uncontrolled factors section (“Opportunities for new discoveries”).
or experimental mishap. His practice in the past has been to note
the occurrence of any atypical aspects of the data collection in a log———————————————————————————
book when the animal is run.

the students to learn in order to work on the project. Second, there  Some of these notations are later found to be associated
is no need for students to enter data for analysis: the data generated unusual data values; others are not. Most weird scores turn out to
from an experimental design is immediately available in the same have some notation in the log book. However, not all notations mean
data analysis environment the student has used throughout the that the score is weird. Because Dr. Thomas finds truly weird scores
course. As a result, students can focus their attention and effort at a to be troubling, he is prepared to reward you if you can identify the

log book notations which seem to be associated with really weirdmuch higher level than would be possible with “real data” projects.
observations. In your data, you will get the comments transcribed
from Dr. Thomas' log book, using the following codes:Incentive to balance costs against precision

Code DescriptionIf there are no constraints on sample size, it is possible for students
AA Animal appeared Agitated after ECS

to easily determine all the true effects in their data simply by AF Apparatus Failure (even if minor)
making the sample size large. The project is designed to establish DH Difficulty in Handling the experimental animal
the usual tradeoff between the costs of an experiment and the EE Experimenter Error - any deviation from the procedure.
benefits of increased power and precision which occur in actual EI Experimenter ill or Indisposed

SA Animal in a state of high Sexual Arousalresearch settings. The instructions to the students do this as
follows:

It turns out that three of the logbook codes are in fact
From previous research, Dr. Thomas estimates that it costs about systematically associated with an error component about 4 times
$5.00 to setup any experimental run or pilot study, plus an extra $.50 the MSE in the data. All six logbook codes, however, are
to setup each different experimental treatment combination generated with approximately the same low frequency (4-6%), so
('GROUP') included in an experiment. In addition it costs $0.25 for students who take up the challenge must find a way to distinguish
each animal tested. Dr. Thomas has a total of $1000 to spend on the real outlier effects from the red herrings.this study, including a consulting fee of $500 for you. He proposes
that if the total costs of your experimental runs (see below) exceed
$500, the difference will be subtracted from your fee; if your costs
are less than $500, you get the difference, which will be translated
into “points” on your project.
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Learning from replication  It is important, however, that students receive the same data if
they merely rerun the identical design, because students typically

Because most students at this level have never engaged in a run a series of analyses on their data. This is achieved by making
research enterprise they have little concrete understanding of the the seed for the random number generator depend on the student's
value of replication and tend to regard significance tests as “proof” user account number (“userid”) and the experimental run. For
rather than as the basis for conclusions in need of further example, if USERID is a 4-digit number which is unique for each
confirmation. The simulation project offers a means to modify student, the random seed can be calculated as
these notions, sometimes dramatically.

seed = 2*(10000*run + userid) + 10001;
 Students carry out their pilot runs to determine an appropriate
design for the main study. In the process they observe that some to yield data which differs for each student and each experimental
effects may differ from one pilot study to the next, but they usually run, but which is unchanged if the same design is rerun. Note that
attribute any inconsistency to differences in the designs or small this computation of the seed value yields the same error
sample size. After the main study, they re-run the same design as a components (eijkl ) for different designs on a given student-run, but
replication (RUN=2), and they must present a single set of the systematic parts (µijk ) change with the design, so the student will
conclusions in the work they submit, based on the results of both. perceive the data to vary. A better procedure is to calculate the

seed value from the design signature, described below, but this
 If their design has sufficient power (and they have not been would require two passes through the DESIGN data set.
terribly unlucky), the main conclusions will agree. Nevertheless, as
they probe the more subtle features of their data (high-order  For a three-factor design the usual parameterization in terms of
interactions, single degree-of-freedom tests, tests of linear and main effects and interactions is, in the usual notation,
quadratic trends), they see quite graphically that not all of the
results of a single study can be expected to turn out identically in a µijk = µ + αi + βj + γj + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk  (1)
replication. The requirement to report a single set of conclusions
can be sobering, but teaches an important lesson more effectively  In order to generate different main effects and interactions for
than mere words. different students, one could specify the non-zero terms in Equation

(1) in several different configurations. It is not necessary to create
a distinct set of effects for each student. Rather, a collection of m 

 3. Details and Implementation effect sets (for example, 2 ≤ m ≤ 5 ) can be created. The particular
set of effects selected for a given student is determined by some

As indicated above, the student's data collection and analysis for computation based on the student's userid; for example, if d is the
the project is all done within the SAS System in a mainframe sum of digits in the student's userid, mod(d, m) indexes the effect
environment (VM/CMS). The extensive collection of data analysis sets, numbered 0 through m-1 .
procedures, random number routines and fully programmable data
manipulations makes SAS an ideal medium for such a project  In the case of quantitative factors, such as DOSE and DELAY
(Antes & Sauerbrei, 1992; Hamer & Breen, 1985). Similar in the John Thomas experiment, some considerable simplification
simulation-based projects could be developed using other software, is possible by parameterizing µijk in terms of simple polynomials.
and in other computing environments as long as the following

For example, letting (x1, x2, x3) denote the values of DOSE (0-3),features are present:
DELAY (0-60), and TASK (0, 1), and restricting all interactions to
linear-by-linear form, the cell means can be parameterized as,• Each student must be identified to the system by a unique

 account number or userid. Individual data is tied to the
µijk = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3  (2) student's userid, and the system keeps a record of each

 experimental run for each student. + b23x2x3 + b123x1x2x3 . 

• The data generation program must be set up so that students
 can access it, but the source code must be hidden so that they  For each parameterization the cell means are determined by the
 cannot determine the algorithm by which the data are eight coefficients in equation (2). In each of the m effect sets, some
 generated. coefficients are set to zero, giving null effects; the non-zero values

are determined (by trial and error) to give approximately equal
• It must be possible to log a summary record which encodes range of cell means in each effect set. Finally, the error variance σ2 
 each experimental run for each student. is determined so that a reasonable sample size will give a power of

at least .90 for detecting all non-null effects.
Generating individualized data

Hiding the source code
The data for each student and each experimental run is generated
from a reparameterization of the cell means model for a three- The algorithm used to generate the data must, of course, be hidden
factor design, from the students, since otherwise they could determine the correct

decisions without collecting any data. In Release 6.06 and later,
yijkl = µijk + εijkl , this can be accomplished easily by compiling the DATA step used

in the GETDATA macro. This facility was not available when the
project was first developed, however, and so we were forced towhere yijkl is the experimental score of subject l in treatment
develop another solution.combination (i, j, k) , µijk is the population mean for that cell, and εijkl 

is the random error, distributed normally, N(δ, σ2) and δ is non-
 On the VM/CMS system SAS is run by invoking SAS EXEC, azero for outliers, but zero otherwise. Extension to other designs is
command program in the REXX language which accesses requiredimmediate.
disks and datasets, sets up the SAS autocall macro libraries, and
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invokes the SAS supervisor. The information-hiding requirements file to be sent as email to the logging account, then deleted from the
of the project were accomplished by writing a new command student's directory.
program, SAS303 EXEC, which the students were required to use
for the project. The GETDATA macro is stored in a MACLIB on a  To help the students keep track of their data collection costs, a
course disk to which the students normally do not have read-access. program on the class disk (MYRUNS) was made available. This
SAS303 EXEC creates a read-only link to this disk, appends the program (see Figure 4) reads the student's records from the logging
MACLIB to the list of autocall libraries, and calls the system SAS file, selects those with unique design signatures, and displays the
EXEC. The SAS303 EXEC itself is hidden (students can execute it, relevant fields along with the total cost for all runs to date.
but cannot read it), so that the details of the process cannot be
discovered. myruns

Determining unique experimental runs Userid Run Date Time Cost Gps N Tot Design
YSPY0333 0 24MAR92 13:56 41.00 24 4 96 3,4,2

In order to calculate the student's experimental design costs it is YSPY0333 0 26MAR92 10:13 20.00 12 3 36 2,3,2
necessary to keep track of each experimental run and determine YSPY0333 0 27MAR92 15:39 35.00 30 2 60 5,3,2
which of these are unique experimental designs (versus a rerun of YSPY0333 0 27MAR92 16:48 35.00 24 3 72 4,3,2
the same design). Students are told that: YSPY0333 0 13APR92 11:28 65.00 40 4 160 5,4,2

YSPY0333 1 16APR92 12:19 105.00 40 8 320 5,4,2
Each time you request an experimental run, your design specification YSPY0333 2 16APR92 16:23 105.00 40 8 320 5,4,2
are recorded in a logging file. If you request an identical Totals: 7 unique runs $406.00
experimental again (i.e., run the same program without any change
to the DESIGN data step), no cost is “added to your bill” - you simply Figure 4: Listing a student's unique experimental runs
get the same data you got before. If you change the experimental
design in any way, you get new data and the cost of data collection

Analysis Toolsis posted to your account.

Students in the course learn to use the SAS System for data To determine unique experimental runs, the GETDATA program
summarization, analysis of linear models and simple graphicalcalculates a “signature” number from the specifications in the
display. It is not expected, however, that they know very muchDESIGN data set. The signature is calculated as the sum, over all
programming beyond simple data manipulation. Therefore,experimental groups, of a product of prime numbers indexed by the
students are provided with sample programs which illustrate suchfactor levels (x1g, x2g, x3g ) and sample size, ng :
things as constructing contrasts for components of interactions,
extraction of fitted means under a specified model from the SAS
general linear model procedure, and plotting of two- and three-way
interactions.

signature = ∑
g=1

G

p(ng) p(1+x1g) p(1+x2g) p(1+x3g) 

 In addition, general programs for power analysis are madewhere p(i) is the i th prime number. Two experimental runs are
available to the students. One program (adapted from Cary, 1983),considered identical if the signature and number of groups are the
designed for prospective power analysis, calculates power for asame. Note that a product over groups is required to guarantee a
range of sample sizes and a range of effect-size values for any mainunique signature for any conceivable experimental design, but we
effect or interaction in a balanced factorial design. A seconduse a sum to make sure the signature can be represented exactly in
program, following O'Brien and Lohr (1984; Lohr and O'Brien,no more than 12 significant digits. If by chance two distinct
1984), assists the student in performing retrospective powerdesigns with the same number of groups map to the same signature,
analysis on their data from an experimental run. This programthe student gets an additional free design.
takes the results of a SAS GLM procedure analysis of a given data
set and calculates the actual power for each effect specified in theLogging experimental runs
model, if the sample means in the data were equal to population
values.After the SAS program has generated the student's data, a summary

record which identifies the design and data cost is written to a file.
 For example, for the data shown in Figure 3, the student wouldThe fields in this record are the student's userid, run number, design
carry out GLM and power analyses by including the followingsignature, random seed, date and time, data cost, groups, NOBS,
statements in the SAS program:total sample size, and number of levels of each of the DELAY,

DOSE and TASK factors.
proc glm data=project.run0 outstat=stats;
 class delay dose task; The lines below show several summary records for one student
 model score=delay|dose|task / ss3;who conducted a 6-group pilot study varying only DELAY and
%power(data=stats);TASK, then expanded the design to include all factors with 16

groups. The second design was rerun, giving an identical signature,
The MODEL statement specifies a full three-way factorial design.presumably to add more analysis steps to the SAS program.
The Type III sums of squares (SS3), degrees of freedom, and
F -values for each effect in the model are saved in a SAS data setuserid run sign. seed date time cost gps n tot design

YSPY0334 0 4200 10669 11MAR92 10:10 14.00 6 4 24 3,1,2 STATS, which are used by the POWER program to calculate the
YSPY0334 0 24255 10669 11MAR92 10:44 29.00 16 4 64 4,2,2 power values. The results of the power analysis for these data are
YSPY0334 0 24255 10669 11MAR92 10:49 29.00 16 4 64 4,2,2 shown in Figure 5.

 For security reasons, we do not give the student write-access to  From this display, the astute student should be able to discern
the disk where the logging file is stored, even for the brief time that (a) significant effects of DELAY, DOSE and DOSE*TASK
while the data generation program is running. Rather, the summary are clearly detectable even in a 2 × 2 × 2 design with n = 4 
record is written to the student's directory, the program causes that
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———————————————————————————  Students differed considerably in the number of experimental
studies conducted and in the size of those studies. Figure 7 shows

 Power Analysis for Variable SCORE the average number of treatment groups in each successive pilot
 F Nominal Adj. study carried out and the numbers of students who ran each of 1-12
 SOURCE _TYPE_ DF Value power power

pilot studies. Most students ran 3-4 pilot studies before proceeding 

to their main experiment, though a few tended to try many DELAY SS3 1 70.33 1.000 1.000

 DOSE SS3 1 38.39 1.000 1.000 variations before fixing an experimental design.
 DELAY*DOSE SS3 1 6.59 0.692 0.577

 TASK SS3 1 2.24 0.301 0.166
 As the figure shows, the number of treatment groups tended to DELAY*TASK SS3 1 0.25 0.077 0.050
increase modestly over these pilot studies, as students added more DOSE*TASK SS3 1 13.78 0.945 0.905

 DELAY*DOSE*TASK SS3 1 0.90 0.149 0.050 levels of factors to more adequately cover the design space.
Students often began with a 2 × k × 2 design in which the TASK

Figure 5: Results of Retrospective Power Analysis for Sample and/or DOSE factors were restricted to two levels, mostly the
 Experiment extremes. Their designs for the main study most commonly used

all four DOSE levels, four or five DELAY values, and both
——————————————————————————— TASKs.

observations per cell; (b) effects of DELAY*TASK and
DELAY*DOSE*TASK are nil; and (c) a larger design or more
observations are required to decide about the effects of TASK and
DELAY*DOSE. While this analysis gives the student much more
information than the standard ANOVA summary table, the student
must still determine the nature of significant effects. Plots of
means and subsequent tests of multiple comparisons or polynomial
contrasts, for example, would be required to determine the form of
main effects and interactions and to decide if these were consistent
with expectations given in the project description.

 4. Results

This project has been used for four years. In each year, detailed
records of every experimental study run by each student were saved
while the project was under way, but complete data on the
breakdown of decisions and grades was kept only for the most
recent year. The available data are summarized below.

 Students were quite conscious of controlling the costs of their
experimental runs. The distribution of total costs for experimental
runs over all four years is shown in Figure 6. It can be seen that
most students used from $200 to $400 of their experimental budget,

 and only a few students went over-budget. (The students in the $50
interval did not complete the project.) Although it was repeatedly

Figure 7: Mean Number of Treatment Groups in Pilot Studies.stressed to students that the payoff for discovering true effects
 Numbers at the bottom show the number of students($200 for each correct decision) would far outweigh the marginal
 who ran each number of pilot studies. Error bars showcosts of data collection, it is clear that students perceived the $500
 ± 1 standard error around each mean.budget as a psychological barrier.

 Students were to use the results of their pilot studies to COST Total cost of all experiments

 Midpoint Freq determine an appropriate sample size for their main and replication
 | experiments. In Run 1 the average sample size was 7.87, with
 $50 |************ 6 quartiles of 5 and 8. Students increased their sample sizes slightly
 $100 |****************** 9

in Run 2, with an average of 8.51 and quartiles of 6 and 10. Power $150 |****************************** 15

 $200 |******************************************** 22 considerations indicate that designs with more treatment
 $250 |************************************************** 25 combinations could achieve equivalent power for main effects with
 $300 |**************************************************** 26 smaller sample sizes. However, there was essentially no relation
 $350 |****************************************************** 27

between number of treatment groups and sample size $400 |******************************** 16

(r = -0.088, -0.057 in Runs 1 and 2). $450 |************************ 12

 $500 |********** 5

 $550 |**** 2  Student's grades on the project were based on both their total
 $600 |********** 5

“consulting fee” (60%), calculated as $650 |**** 2

 $700 |** 1

 ----+---+---+---+---+---+---+---+---+---+---+---+---+-- fee = (1000 − cost) + 200 × (correct decisions + bonuses) 
 2 4 6 8 10 12 14 16 18 20 22 24 26

 Frequency
and their written report on their work (40%). There were seven
statistical decisions for the ANOVA effects. A bonus could beFigure 6: Distribution of Total Costs for Students' Data
earned for identifying each of the three log book codes associated Collection, 1985-1991 data
with outliers, and for correctly determining the nature of factor
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effects and interactions (by trend analysis or multiple comparisons ———————————————————————————
procedures). The distribution of number of correct decisions for
students in the most recent class shown in Figure 8, is highly J-  Table 1: Correlations among project variables
shaped. It was relatively easy for most students to draw most of the

 Variable Course Project Cost Correct Bonus Fee Writeupcorrect conclusions from their data. Students who excelled were
distinguished primarily by their ability earn bonuses. These

 Course 1.000
students often went well beyond the standard ANOVA methods to  Project 0.694 1.000

discover the log book codes which were associated with outliers  Cost 0.026 -0.040 1.000

 Correct 0.569 0.767 0.177 1.000and to determine the nature of factor effects.
 Bonus 0.436 0.837 -0.014 0.409 1.000

 Fee 0.580 0.954 -0.170 0.726 0.862 1.000
CORRECT Number of Correct Decisions

 Writeup 0.751 0.940 0.122 0.725 0.722 0.796 1.000
Midpoint Freq

 ----------------------------------------------------------------------
 |

 1 | 0  Note: Course = total course mark; Project = total project
 2 | 0 mark; Cost = data collection cost; Correct = number of correct
 3 |** 1 decisions; Bonus = number of bonus points awarded; Fee =
 4 |** 1 consulting fee; Writeup = mark for project writeup.
 5 |************** 7

 6 |********** 5

 7 |******************************************************** 28 ———————————————————————————
 ----+---+---+---+---+---+---+---+---+---+---+---+---+---+

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 projects.
 Frequency

DECISION Correct + Bonus Decisions  Most of the published descriptions of simulation-based data
Midpoint Freq analysis projects come from psychologists and social scientists
 | teaching research methods courses that combine research design
 1 | 0

and statistical theory with a strong emphasis on application and 2 | 0

interpretation of results within a research context. Much of this 3 |***** 1

 4 |***** 1 work was stimulated by reports in the early 1970s (Johnson, 1973,
 5 |*************** 3 1974; Main, 1972) of specialized computer systems for
 6 |********** 2

implementing simulated experiments. Several of these were 7 |****************************** 6
subsequently developed as general, data-driven simulation drivers 8 |************************************************** 10

 9 |********************************************* 9 (Eamon, 1980; Stout, 1974) which allowed instructors to design
 10 |*********************************** 7 and set up new simulations with relative ease. Such simulations
 11 |********** 2

were often used with game-like rule structures and rewards 12 | 0
designed to create a research culture in the classroom. Johnson's 13 |***** 1

 14 | 0 (1973, 1974) DATACALL and the Project Simulation described by
 -----+----+----+----+----+----+----+----+----+----+ King, King & Williamson (1984) required students to publish their
 1 2 3 4 5 6 7 8 9 10

results to attain points, with greater awards for being the first to Frequency
publish a significant finding than for replications or non-significant
findings. Anderson (1982) surveys much of this work andFigure 8: Distributions of Number of Correct Decisions, 1991
describes ways in which these simulation activities can be varied data
along dimensions of interaction among the students and
competition versus cooperation. The cost of data collection, was essentially uncorrelated with

grades on the project (r = -0.04 ), and with the student's total
 Projects using real data have some strengths and weaknessesconsulting fee (r = -0.17 ), as shown in Table 1. Although the
compared with simulation projects, though it must be stressed thatproject counted for only 15% of the course grade, the students' total
the details of any project are more important than the source of thegrade in the course was highly correlated with all of the project
data. On the one hand real data may potentially generate morecomponents. Interestingly, course grade correlated more highly
student interest, particularly if the problem is engaging andwith the mark for the project writeup (r = .75 ) than it did with the
relevant, and the results have some potential real implications. Forconsulting fee (r = .58 ). This is most likely because the writeup
example, data from large-scale surveys can be used to allowrequired the student to communicate the strategy used to select an
students to investigate issues of public and social policy in whichexperimental design and the reasoning behind their conclusions,
they might have some real stake.whereas many of the steps data collection and drawing inferences

could be accomplished by students with modest understanding.
 On the other hand, the use of simulation data allows the
instructor to create an instructional microworld tailored to specific
skills and pedagogical objectives, in ways that are difficult or 5. Discussion
impossible to achieve with real data. In the present case, for
example, the Dr. John Thomas experiment is focused on theSimulation methods have been widely used for demonstrations and
process of designing experiments and learning from the analysis ofexercises in teaching statistical concepts such as sampling
its results. The system of rewards for correct decisions and costsdistributions and properties of statistical estimators (e.g.,
for data collection creates a setting that directly mirrors theSchuermann & Hommertzheim, 1985). However, simulation
tradeoffs which occur in real research. However, even though thisprojects for experimental design courses, such as that described
experiment was described as “a real experimental context”, it ishere, while not new, do not appear to be widely used in statistics.
unlikely that students regard the effects of electroconvulsive shockIndeed, Anderson and Loynes (1987) survey a wide variety of
on maze learning in rats as one of burning intellectual interest.approaches to teaching practical statistics, including drill exercises,

experiments and real-data projects, case histories and consulting
activities, among others, but do not explicitly discuss simulation
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 There are several ways in which projects such as this could be Main, D. (1972). Toward a future-oriented curriculum. American
modified to incorporate other educational objectives or enhance the  Psychologist, 27, 245-248.
present ones. In the most recent year, students were allowed to O'Brien, R. G., and Lohr, V. I. (1984). Power analysis for linear
work individually or in with a partner. Those who chose to work in  models: The time has come. SUGI Proceedings, 9, 840-846.
a team were required to designate one one person as the Schuermann, A. C., and Hommertzheim, D. L. (1985). Using
Experimenter, doing all the data collection on that person's  simulation models in demonstrating statistical applications.
computer account, since data generation was linked to the account  Simulation and Games, 14, 47-61.
number. They were instructed to make their decisions jointly and Stout, R. L. (1974). Modeling and the Michigan Experimental
submit a joint project report, and both members received the same  Simulation Supervisor. Behavior Research Methods and
project grade. Nearly 80% chose to work with a partner and this  Instrumentation, 6, 121-123.
teamwork appeared to increase the degree of cooperation and
interaction among the students and with me. They came more
often to office hours for discussion about the project, and when
they did their questions were generally more focussed and strategic
than in previous years.

 Appendix A
 Second, although the project is described to the students in
terms of a consulting relation with Dr. Thomas, their work does not
involve them in a consultation process. One way to foster the A simplified version of the GETDATA macro appears below. Values
development of consulting skills would be to arrange for them to be of the effect sets have been changed and extensive error checking
able pose questions to the client (perhaps by electronic mail), of the students' DESIGN data set have been deleted.
whose role would be played by the instructor or a course assistant.

%macro getdata(RUN=0,
 design=design, Acknowledgements. I am grateful to Marshal Linfoot of
 out=PROJ303.RUN&run);York Computer Services for technical assistance.
run; options nosource2 nonotes nomacrogen nomlogic
 nomprint errors=0;

 Author's Address. For further information, contact:

proc iml; /* find # levels of each factor */
 Michael Friendly  use &design;
 Psychology Department, York University  read all var{delay} into delay;

 read all var{dose } into dose ; Downsview, ONT, Canada M3J 1P3
 read all var{task } into task ; email: <friendly@VM1.YorkU.CA>
 d1 = design(delay); www: http://www.math.yorku.ca/SCS/friendly.html
 d2 = design(dose );
 d3 = design(task );
 levels = ncol(d1)|| ncol(d2) || ncol(d3); References  lev = char(levels,2,0);
 lev = lev[1]+','+lev[2]+','+lev[3];

Anderson, C. W., and Loynes, R. M. (1987). The teaching of  lev = trim(rowcatc(lev));
 practical statistics. New York: John Wiley & Sons.  call symput('LEVELS',lev);

 quit;Antes, G., and Sauerbrei, W. (1992). Simulation in the statistical
 system SAS. In F. Faulbaum (Ed.), SoftStat '91, Advances in

data &out; Statistical Software 3, Stuttgart: Gustav Fischer.
 set &design end=eof; * read design specs;Anderson, D. E. (1982). Computer simulations in the psychology

 laboratory. Simulation and Games, 13, 13-36.
 length subj 4 log $ 2 userid $ 8;

Cary, A. J. L. (1983). SAS macros for F-test power computations  retain error 0 seed date time userid cms run d;
 in balanced experimental designs. SUGI Proceedings, 8,  keep run group subj delay dose task log score;
 671-675.
Eamon, D. (1980). LABSIM: A data-driven simulation program  array prime{20} _temporary_ /* primes */

 ( 2 3 5 7 11 13 17 19 23 29 for instruction in research design and statistics. Behavior
 31 37 41 43 47 53 59 61 67 71); Research Methods & Instrumentation, 12, 160-164.
 array B{3,0:7} _temporary_ /* effect sets */Hamer, R. M. and Breen, T. J. (1985). The SAS System as a
 /* b0 b1 b2 b3 b4 b5 b6 b7 */ statistical simulation language, SUGI Proceedings, 10,
 (90 0 26 -32 0 -22 18 0 /* d=1 */ 982-989.
 74 25 0 -25 12 0 0 -16 /* d=2 */

Johnson, R. (1973). DATACALL: What it is and how to do it.  85 20 -23 0 -9 17 0 0 ); /* d=3 */
 Unpublished paper, Exxon Research Foundation, New York,  array logbook {2,4} $2 /* logbook codes */
 1973.  ('AF' 'DH' 'SA' ' ' 'EI' 'AA' 'EE' ' ');
Johnson, R. (1974). Instructional simulation: the interface with the  array logwild {2,4} /* outlier means */
 student. Behavior Research Methods & Instrumentation, 6,  ( 40 -37 32 0 0 0 0 0 );
 128-130.

 label SCORE = 'Performance measure on maze'King, A. R., King, B. F., and Williamson, D. A. (1984).
 DOSE = 'Amount of Adrenaline given' Computerized simulation of psychological research. Journal
 TASK = 'Type of maze' of Computer-Based Instruction, 11, 121-124.
 DELAY = 'Time between learning and ECS'Lohr, V. I., and O'Brien, R. G. (1984). Power analysis for
 GROUP = 'Treatment combination'

 univariate linear models: The SAS system makes it easy.  RUN = 'Experimental Run'
 SUGI Proceedings, 9, 847-852.  LOG = 'Log Book Comment';

 file print; /* Put to LISTING file */
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 if _N_ = 1 then do;
 run = &run; proc print n;
 userid = substr(getexec('USERID'),1,8);  id GROUP SUBJ;

 var DELAY DOSE TASK LOG SCORE;
 date = date(); time=time();  title 'Generated data from your Design';
 put @20 'John Thomas ECS Study' options source notes; run;
 / @20 21*'=' /; %mend;
 put @5 'RUN: ' RUN 3. /
 @5 "Levels: &levels (Delay,Dose,Task)"/
 @5 'Run on:' date WEEKDATE. ' at '
 time TIME8.;
 put @5 'For: ' userid //;
 put @5 'GROUP' @12 'DELAY' @22 'DOSE'

 Appendix B @32 'TASK' @42 'NOBS' / ;

 SAS303 EXEC cms = input(substr(userid,5,4),4.);
 seed = 2*(1000*run+cms) + 10001;
 end;

SAS303 EXEC makes the GETDATA macro available to the students,
 GROUP + 1; * Increment # of groups; without their being able to read the source. SAS303 EXEC itself is
 totobs + NOBS; * Sum # of observations; stored on the course minidisk, but with filemode 0, so the students
 TASK = upcase(TASK); cannot read it. A small compiled assembler file, SAS303 MODULE
 put @5 GROUP 3. @12 DELAY 3. @22 DOSE 2.

is invoked when the student issues the SAS303 command, which in @30 TASK $8. @42 NOBS 3. ;
turn invokes SAS303 EXEC.

 /* calculate design signature */
/* SAS303 EXEC for Psychology 3030 Simulation Project */ x1 = 1+dose;
 Trace 'O' x2 = 1+delay;
 Parse Arg filename filetype filemode "(" options x3 = 1+(task='HARDMAZE');

 sign + prime(nobs) * prime(x1)
 Address COMMAND * prime(int(x2/5)) * prime(x3);
 'IDENTIFY (STACK' /* Get student userid */
 Pull userid . /* (accessed by GETEXEC) */ /* calculate cell mean & MSE */

 d = 1+mod(CMS,3);
/* Perform link to GETDATA source disk, but do so silently */ mean = b(d,0) + b(d,1)*x1 + b(d,2)*x2
 'EXECSERV FREEVDEV (STACK FIRST MSG' + b(d,3)*x3 + b(d,4)*x1*x2 + b(d,5)*x1*x3
 Pull . vdev + b(d,6)*x2*x3 + b(d,7)*x1*x2*x3;
 'EXECSERV FREEMODE (STACK FIRST MSG' mse = 30*(d=1) + 27*(d=2) + 32*(d=3);
 Pull . mode

 flag = 0; /* Generate outliers, */
 linkcmd = "CP LINK PS3030 191 AS" vdev "RR passwd" do SUBJ= 1 to NOBS; /* no more than 1/group*/
 'EXECIO 0 CP (STRING' linkcmd if flag=0 & uniform(SEED)<0.085
 if rc ¬=0 then signal BADLINK then do;
 'SET CMSTYPE HT' d = 1; flag = 1;
 ACCESS vdev mode k = rantbl(seed,.3, .3, .3, .1);
 'SET CMSTYPE RT' end;

 else do;
 'FILEDEF RUNLOG DISK' userid 'RUNLOG A (RECFM V LRECL 80)' d = 2;
 'STATE FORTUNE EXEC *' k = rantbl(seed,.04,.04,.04,.88);
 If rc=0 then do end;
 If random(1,10)>4 then do log = logbook(d,k);
 Say "A thought for today, while I'm getting your data..." wild= logwild(d,k) + 20*(uniform(SEED)-.5);
 Say wild= (d=1) * int(wild);
 'EXEC FORTUNE'
 end SCORE = mean + wild + mse * normal(seed);
 end SCORE = max(round(SCORE),0);
 sasautos = "SASAUTOS=('P303 MACLIB *', SASAUTOS)" output;
 'EXEC SAS' filename filetype '(' options 'SYSPARM='userid sasautos end;
 sasrc = rc

 if EOF then do;
/* Send the runlog file to PS3030's reader */ put @42 '----' /
 'STATE' userid 'RUNLOG A' @42 totobs 4. ' Total observations' ;
 if rc=0 then put // 'Your data have been saved in the '
 Do || "dataset &out";
 'EXECIO 0 CP (STRING SET IMSG OFF' COST = 5 + .25 * totobs + .5*GROUP;
 'SET CMSTYPE HT' put / 'The cost of data collection for your '
 'EXEC SENDFILE' userid 'RUNLOG A TO PS3030 (NOL NOA NOT NOF OLD' || 'experiment is ' COST DOLLAR6.2 ;
 'ERASE' userid 'RUNLOG A' file RUNLOG ; /* log summary record */
 'SET CMSTYPE RT' /* to runlog file */
 'EXECIO 0 CP (STRING SET IMSG ON' put userid $8. +1 cms Z4. +1 RUN 1. sign 8.
 End +1 seed 5. +1 date date7. +1 time time5.

 +1 COST 6.2 GROUP 3. NOBS 4. totobs 4.
/* Remove all evidence */ +1 "&levels" ;
 'SET CMSTYPE HT' end; /* if EOF */
 'FILEDEF RUNLOG CLEAR' run;
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 'RELEASE' mode
 'EXECIO 0 CP (STRING DETACH' vdev
 'SET CMSTYPE RT'
 EXIT sasrc

BADLINK:
 Say "Can't find the data. Please report this return code to FRIENDLY",
 " RC =" rc
 exit rc
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