
Multidimensional arrays in SAS/IML R
 Software
Michael Friendly

York University

Abstract

This paper describes a data structure and a set of SAS/IML modules
for handling multidimensional arrays in a flexible way. The data
structure provides variable names and labels for the levels of the
table for all dimensions, along with the table data. The processing
modules ilustrate:

� Generalized transpose of a multidimensional array, as inAPL.
� Applying a reduction operation over specified coordinates.
� Printing a labeled multidimensional array.
� Producing LATEX and HTML tables fromn-way arrays.
� Transferring such data between SAS/IML and other software.

The usefulness of this approach is illustrated with examples from
my work on graphical methods for categorical data.

1 Introduction

SAS/IML contains a rich variety of matrix operations and built-
in functions for statistical computation and graphics. Other array-
oriented programming languages, such asMathematica, APL and
MATLAB, provide some of these facilities, but the combination
of high-level operations, statistical functions, and graphics in
SAS/IML is hard to beat for most of the statistical graphics appli-
cations I have developed.

At least thatwas true until I began work on graphical methods
for categorical data, where multidimensional arrays are the rule,
rather than the exception, in contrast to quantitative data, where
two-dimensional arrays (tables, SAS data sets) handle almost all of
ones needs.

Table 1: Survival on the Titanic

Class
Gender Age Survived 1st 2nd 3rd Crew
Male Adult Died 118 154 387 670
Female 4 13 89 3

Male Child 0 0 35 0
Female 0 0 17 0

Male Adult Survived 57 14 75 192
Female 140 80 76 20

Male Child 5 11 13 0
Female 1 13 14 0

Table 1 illustrates a four-way contingency table (4 � 2 � 2 �
2), containing the numbers of passengers and crew on theTitanic,

classified by Class, Sex, Age, and Survival. How can we represent
such data for analysis and graphics?

A SAS dataset, such as might be produced byPROC FREQ, struc-
tures the frequencies as a single variable (COUNT), together with
factor variables (Class Sex Age Survived), indicating the cell
of the four-way table to which theCOUNT belongs.

Class Sex Age Survived COUNT

1st Male Adult Died 118

2nd Male Adult Died 154

3rd Male Adult Died 387

Crew Male Adult Died 670

1st Female Adult Died 4

2nd Female Adult Died 13

3rd Female Adult Died 89

Crew Female Adult Died 3

... (24 more data lines) ...

But in such a data set, the 4-way structure of the frequencies is
implicitly contained in the order and arrangement of the factor vari-
ables. This makes it hard to do computations and graphics with
multidimensional arrays.

The observations in the dataset appear in row-major order (Class
varying most rapidly, Survived least rapidly). If we wished to rear-
range the data so that Survived varied most rapidly, we might try

proc sort data=titanic;

by class gender age survived;

Unfortunately, this does not work well for character variables that
represent ordered factors. A factor with levels ’Low’, ’Medium’,
’High’, for example would be ordered as ’High’, ’Low’, ’Medium’;
even worse, the result for theclass variable here would depend on
the collating sequence of your machine!

An alternative structure consists of a set of SAS/IML variables
containing the variable names (VNAMES), the number of levels of
each variable (LEVELS), and the labels for those levels (LNAMES), as
shown below. With the convention that the table entries (COUNT in
the dataset) are arranged in row-major order (first variable varying
most rapidly), these variables (plus the table) represent the same in-
formation as in the dataset, but turn out to be much more convenient
in SAS/IML.

VNAMES LEVELS LNAMES

Class 4 1st 2nd 3rd Crew

Sex 2 Male Female

Age 2 Adult Child

Survived 2 Died Survived

(TheLEVELS andCOUNT variables are in the form required by the
IML function IPF which fits loglinear models by iterative propor-
tional fitting.)

With this data structure, I can enter theTitanicdata in SAS/IML
using the statements,

proc iml;

levels = f4 2 2 2g;
vnames = f'Class' 'Sex' 'Age' 'Survived'g;
lnames = f'1st' '2nd' '3rd' 'Crew',

'Male' 'Female' '' '',

'Adult' 'Child' '' '',

'Died' 'Survived' '' ''g;
table = f

/* 1 2 3 Crew Survive Age Sex */

118 154 387 670, /* No Adult Male */

4 13 89 3, /* No Adult Female */

0 0 35 0, /* No Child Male */

0 17 0, /* No Child Female */

57 14 75 192, /* Yes Adult Male */

140 80 76 20 /* Yes Adult Female */

5 11 13 0, /* Yes Child Male */

1 13 14 0, /* Yes Child Female */

g;
data='titanic';

title='Survival on the Titanic';

With the processing modules for handling such arrays, the LATEX
version of Table 1 is then produced by an IML moduleMD2TEX as

run md2tex(levels, table, vnames, lnames, data, title);

The same table can be printed to an HTML file

run md2html(levels, table, vnames, lnames, data, title);

(or to a listing file, with an analogousrun md2print).
More importantly, there are various operations we may wish to

perform on such a multidimensional array. Two fundamental oper-
ations are

generalized transpose:For a two-way array, the transposet(A)
interchanges rows and columns. For ann-way array, general-
ized transpose permutes the dimensions.

generalized reduction: For a two-way array,A[+,] gives sums
over rows, andA[,+] gives sums over columns. SAS/IML
provides other subscript reduction operators for means (:),
products (#) and some others. For ann-way array, we would
like analogous operations.

We describe these extensions to SAS/IML below. They are the
basic tools for manipulatingn-way arrays. They also serve as the
basis for graphical methods ofn-way contingency tables as illus-
trated by mosaic displays and other methods described inVisualiz-
ing Categorical Data(Friendly, 1999b,VCD).

2 Generalized transpose

For a matrixA = faijg, the transpose operation interchanges rows
and columns so thatt (A) � AT = fajig,

A =

"
1 2
3 4
5 6

#
t (A) =

�
1 3 5
2 4 6

�

Similarly, for ann-way array,A = faijkl���g, the generalized trans-
pose reorders the dimensions of the array according to a permuta-
tion of its indices. A three-way array, of sizeI � J �K, is turned
“inside-out” by

t321 (A) = fakjig

For example, the display below shows a2� 2� 2 array transposed
with the permutations (3,2,1) and (3,1,2).

ORDER 1 2 3 --> ORDER 3 2 1

B1 B2 B1 B2

A1 A2 A1 A2 C1 C2 C1 C2

C1 1 2 3 4 A1 1 5 3 7

C2 5 6 7 8 A2 2 6 4 8

--> ORDER 3 1 2

A1 A2

C1 C2 C1 C2

B1 1 5 2 6

B2 3 7 4 8

The ability to be able to perform such operations as summing or av-
eraging over specified dimensons depends on being able to reorder
the dimensions in any specified way.

2.1 Generalized transpose in SAS/IML
SAS/IML has only two-way matrices, but the functionsIPF and
MARG both representn-way arrays using a vector ofLEVELS to spec-
ify the table dimensions. TheMARG function is designed to calculate
the sums (margins) over any number of variables, specified by an ar-
ray of coordinates for which sums are desired. To find the marginal
totals for the variables A and B (summing over C) in the example
above,

config = f1,
2g;

call marg(loc,marginal,dim,table,config);

print marginal;

This produces:

MARGINAL

6 8 10 12

If all coordinates are included in the configuration, the table is re-
turned unchanged:

config = f1,
2,

3g;
call marg(loc,marginal,dim,table,config);

print marginal;

MARGINAL

1 2 3 4 5 6 7 8

However, if the column inCONFIG is a permutation of the integers
1:n,

config = f3,
2,

1g;

the same call toMARG gives:

MARGINAL

1 5 3 7 2 6 4 8

These are the elements in the array transposed with the permutation
(3; 2; 1). This use of theMARG function1 is the basis for generalized
transpose, shown here as a demonstration function,

1The MARG function requires that the table entries be non-
negative, but not necessarily integers. If the table contains nega-
tive values, it is necessary to add a quantity to all entries first, then
subtract that quantity after transposing the array.

start margdemo(dim, tab, order);

ord = t(order);

lev = t(dim);

run marg(loc,table,lev,tab,ord);

table = row(table);

print order, table;

finish;

order=f3 1 2g;
run margdemo(dim, table, order);

order=f3 2 1g;
run margdemo(dim, table, order);

These produce the elements inTABLE ordered as shown in the trans-
pose examples at the start of this section:

ORDER 3 1 2

TABLE 1 5 2 6 3 7 4 8

ORDER 3 2 1

TABLE 1 5 3 7 2 6 4 8

The ordinary matrix transpose is reflexive, so that(AT)T = A,
but the general rule is that a transposed array is restored by a second
transpose using theanti-ranks(inverse permutation) of the original
permutation vector:

run transpos(dim, table, vnames, lnames, order);

r = rank(row(order));

anti = r;

anti[,r]=1:ncol(row(order)); *-- anti-ranks;

run transpos(dim, table, vnames, lnames, anti);

For a three-way array,

t321 [t321 (A)] = A

but
t312 [t231 (A)] = A

The data structure forn-way arrays also comprises the vectors
of LEVELS and variable names (VNAMES) and the character matrix
(LNAMES) whose rows give the factor level names. To complete the
transpose for this data structure, we must also reorder these arrays
using the same permutation vector. The moduleTRANSPOS, listed
in the Appendix, carries out this operation. As well, it allows the
permutation of the variables to be expressed as a permutation of the
integers or of the variable names.

2.2 Reordering levels along any dimension
For two-way arrays, we can reorder the rows or columns using the
subscript ([,]) operator by specifying a permutation of the row or
column indices within the subscript brackets. For example, with a
3 � 4 matrix A, the expressionA[f2 3 1g,] puts the first row in
last position, andA[,4:1] reverses the order of the columns.

Using generalized transpose we can also rearrange ann-way ar-
ray along any dimension by: (a) transposing so that the dimension
to be reordered is in first position (warying most rapidly), (b) re-
shaping the result to a matrix with that dimension as its columns,
(c) re-ordering the columns as desired, (d) transposing that array so
that the dimensions are back in the original order.

Why should we want to do this? When then-way array is a ta-
ble of means for ann-way-factorial design, (and the factors are not
intrinsically ordered), ordering each factor according to the main-
effect means gives a more coherent table in which it is easier to see

the trends over each factor. When the array is ann-way contingency
table of frequencies, ordering each factor according to the principal
correspondence analysis dimension gives a table in which the pat-
terns of association among variables are more apparent (Friendly,
1992a, 1994). The general principle is that for unordered factor,
order the levelsaccording to the effects you’d like to see(Friendly,
1999c).

For example, here is a three-way(3�2�4) table with variables
ordered C, B, A. To help see the effect of reordering, each entry
contains the level subscripts of A, B, C as its integer part, and its
ordinal position in the table as fractional part:

B 1 2

C 1 2 3 1 2 3

A

A1 111.01 112.02 113.03 121.04 122.05 123.06

A2 211.07 212.08 213.09 221.10 222.11 223.12

A3 311.13 312.14 313.15 321.16 322.17 323.18

A4 411.19 412.20 413.21 421.22 422.23 423.24

If SAS/IML allowed three-way arrays, we could reverse the order
of levels along the first dimension (variable C) by the expression
TABLE[3:1,,]. Using the moduleDIMORDER, this is accomplished
by

run dimorder(dim, lnames, vnames, table, 1, dim[1]:1);

run mdprint(dim, table, vnames, lnames);

where the last two arguments todimorder give the dimension to
be reordered, and a permutation of its indices. This gives

B 1 2

C 3 2 1 3 2 1

A

A1 113.03 112.02 111.01 123.06 122.05 121.04

A2 213.09 212.08 211.07 223.12 222.11 221.10

A3 313.15 312.14 311.13 323.18 322.17 321.16

A4 413.21 412.20 411.19 423.24 422.23 421.22

Note that as with the generalized transpose operation, the elements
in LNAMES are rearranged in corresponding order.

2.3 Applications
These operations were developed out of need to rearrangen-way
contingency tables in a flexible way so as to reveal the patterns of
association between variables in graphic displays.

Association-ordered displays

For example, Table 2 shows data on the relation between hair color
and eye color among 592 subjects (students in a statistics course)
collected by Snee (1974).

A mosaic display (Friendly, 1994, 1999b) attempts to show the
pattern of association between variables. The rectangles in Figure 1
have areas proportional to cell frequency. Each cell is shaded ac-
cording to the residual from independence, using varying shades of
blue for cells with greater than expected frequencies, and shades of
red for cells with less than expected frequencies. Figure 1 does not
reveal the nature of the association between hair color and eye color,
however, because the row and column variables were arranged in
alphabetical order, as if we had sorted the dataset by

proc sort data=haireye;

by hair eye;

Table 2: Hair-color eye-color data

Hair Color
Eye
Color Black Brown Red Blond Total

Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220

Total 108 286 71 127 592

94

7

10

16

20

68

15

5

17

26

14

14

84

119

54

29

Blond Black Brown Red
Hair color

B
lu

e

B
ro

w
n

G
re

e
n

H
a
z
e
l

E
y
e
 c

o
lo

r

Hair, eye colors ordered alphabetically

Figure 1: Mosaic display for the hair color, eye color data, ordered
alphabetically

The patternis revealed in Figure 2, where the hair color and eye
color categories both rearranged so the the positive and negative
residuals generally appear in opposite corners of the display. Here,
we can see that both variables are arranged in order from dark to
light, and the positive residuals in the opposite corners suggest that
hair color and eye color vary together along this dark–light dimen-
sion.

In the mosaic displays application (Friendly, 1992b), the order-
ing of each variable is found using a correspondence analysis (CA)
of the frequencies, ordering the levels by the category scores on the
largest dimension.

Mosaic matrices

An extension of mosaic displays (Friendly, 1999a) provides an ana-
log for categorical data of the scatterplot matrix used widely for
quantitative data. For ann-way table, the mosaic matrix displays
then(n � 1) bivariate mosaics for all pairs of variables. The sim-
plest case shows the bivariate marginal association between each
pair, as shown in Figure 3. A further extension displays the condi-

68

15

5

20

119

54

29

84

26

14

14

17

7

10

16

94

Black Brown Red Blond
Hair color

B
ro

w
n

H
a
z
e
l

G
re

e
n

B
lu

e

E
y
e
 c

o
lo

r

Hair, eye colors ordered by CA dimension 1

Figure 2: Hair, eye colors, ordered by CA dimension 1

tional association holding other variables fixed.
To accomplish this, then-way array is transposed for each pair-

wise plot, putting thecol and row variables first in the order-
ing, then calling theMOSAIC module to produce the plot for that
panel. The separate plots are composed into one figure usingPROC

GREPLAY.

do row = 1 to factors;

do col = 1 to factors;

others = remove((1:factors), (row||col));

*-- transpose table to conform to model;

order = col||row||others;

dm = dim;

vn = vnames;

ln = lnames;

tab = table;

run transpos(dm, tab, vn, ln, order);

run mosaic(dm, tab, vn, ln, plots, title);

end; /* do row */

end; /* do col */

3 Generalized Reduction

The subscript operators+ (sum),: (mean),# (product),<> (mini-
mum), and so forth provide a way to apply an operation over rows
(e.g.,A[+,] – column sums) or columns (e.g.,A[:,] – row means),
or both (e.g.,A[#,#] – product of all) for any matrix. How can we
generalize this forn-way arrays? InAPL2, which provides a gen-
eral reduction operator forn-way arrays this is justop/[config]A,
whereop is the operation to be performed andconfig is the set
of dimensions over which the reduction is carried out (e.g.,+/[1]A

sums an array over its first dimension.
As with reordering along a dimension, the key to doing this op-

eration in SAS/IML for general arrays is to transpose the array so

Class

Adult Child

1
s
t

2
n
d

3
rd

 C

re
w

Male Female 1
s
t

2
n
d

3
rd

C

re
w

Yes No

1
s
t

 2
n
d

3
rd

C
re

w

1st 2nd 3rd Crew

A
d
u
lt

C
h
il
d

Age

Male Female

A
d
u
lt

C
h
il
d

Yes No

A
d
u
lt

C
h
il
d

1st 2nd 3rd Crew

M
a
le

F
e
m

a
le

Adult Child

M
a
le

F
e
m

a
le

Gender

Yes No

M
a
le

F
e
m

a
le

1st 2nd 3rd Crew

Y
e
s

N
o

Adult Child

Y
e
s

N
o

Male Female

Y
e
s

N
o

Survive

Figure 3: Mosaic matrix for Titanic data, bivariate marginal associ-
ations.

that the dimensions to be reduced appear as the rows (say) of a two-
way table. Ifop is a character string containing the operation to be
performed (e.g.,+, :, #, <>, etc.), andtab is this re-shaped two-
way table, then the generalized reduction may be calculated over
the rows with

call execute('t = tab[' + op + ',];');

Sayconfig is a vector of dimension indices for which sums,
means, products, etc. are desired. Then the permutation of dimen-
sions (ord) to put theconfig dimensions first (as columns of a
matrix) is calculated as

others = remove(1:nrow(dim), config);

ord = config || others ;

This may be transposed and re-shaped to a matrix with theconfig

variables as its’ columns with

run transpos(dim, tab, vnames, lnames, ord);

tab = shape(tab, 0, (dim[config,])[#]);

The moduleREDUCE carries out this generalized reduction, and is
called as

run reduce(dim, table, vnames, lnames, config, op, expand);

If the last argument (expand) is positive, the result is expanded to
match the size and shape of the inputtable argument. This is con-
venient for calculating residuals from a generalized linear model.

To illustrate, for the two-way(4� 3) table

A a1 a2 a3 a4

B

b1 1 2 3 4

b2 5 6 7 8

b3 9 10 11 12

we can get row, column, and grand totals using

run reduce(dim, tab, vnames, lnames, 1, '+', 0);

run reduce(dim, tab, vnames, lnames, 2, '+', 0);

run reduce(dim, tab, vnames, lnames, f1 2g, '+', 0);

giving printed output

CONFIG OP EXPAND TAB

1 + 0 15 18 21 24

CONFIG OP EXPAND TAB

2 + 0 10 26 42

CONFIG OP EXPAND TAB

1 + 0 78

2

Any of these may be expanded to a table of the same size and shape
as the original by supplying a positive value for the last (expand)
argument. For example the last example,

run reduce(dim, tab, vnames, lnames, 1 2, '+', 1);

gives

CONFIG OP EXPAND TAB

1 + 1 78 78 78 78

2 78 78 78 78

78 78 78 78

Similarly, the using the same data values re-shaped as a three-way
(2� 2� 2) table,

B b1 b2

A a1 a2 a1 a2

C

c1 1 2 3 4

c2 5 6 7 8

c3 9 10 11 12

we can get means over each set of coordinates as follows:

run reduce(dim, tab, vnames, lnames, 1, ':', 1);

run reduce(dim, tab, vnames, lnames, 2, ':', 1);

run reduce(dim, tab, vnames, lnames, 3, ':', 1);

run reduce(dim, tab, vnames, lnames, f1 2g, ':', 1);

run reduce(dim, tab, vnames, lnames, f1 3g, ':', 1);

run reduce(dim, tab, vnames, lnames, f2 3g, ':', 1);

run reduce(dim, tab, vnames, lnames, f1 2 3g, ':', 1);

4 Printing tables: output, L ATEX & HTML

When there are more than two dimensions, printing ann-way ta-
ble requires that some of the table variables be printed across the
columns of a table, and the rest are printed down the rows.

4.1 Printed output
The printed tabular output in earlier sections illustrates the out-
put produced by the SAS/IML moduleMDPRINT. This routine cal-
culates the largest field width and number of decimals necessary
to display the table entries, and also the widths required for the
variable names and factor level names. (A global input variable,
maxdec may be used to control the maximum number of decimals
printed.

Using this information, it determines the maximum number of
table variables to be allocated to the columns of the table to fit
within the current linesize, taking the variables in their order in the

vnames vector. (This number may be restricted by the global input
variablemaxcol). The heuristic used is that printed tables should be
as wide as possible to conserve space, all other things being equal.
The remaining variables are allocated to the rows of the printed ta-
ble. The table variables may be permuted first, of course, to achieve
any desired printed output.

TheMDPRINT module provides a basic format which could read-
ily be adapted to other media.

4.2 HTML output
Printing HTML tables is easier in some ways than printed output,
because the browser takes care of rendering the table with columns
nicely aligned, given the HTML input properly marked-up with
<TR>, <TH> and<TD> tags. In other ways it is slightly more tedious,
because the HTML tags and attributes must be combined with the
table data. Fortunately, the+ operator performs concatenation of
character values in SAS/IML, so the basic HTML to display table
values can be written simply as

do r=1 to rows;

do c=1 to cols;

line = '<td align=right>'

+ right(char(tab[r,c],fw,dec)) + '</td>';

put line;

end;

(after the table has been reshaped to a matrix of sizerows bycols).
My goals for HTML tables were somewhat higher, because they

allow spanning rows and columns and varying fonts or background
colors, which could be used to make tables far more attractive than
in print form.

The moduleMD2HTML is used as shown below. It creates output
to the file specified in thefilename htmlout statement.

proc iml;

%include 'md2html';

filename htmlout 'mytable.html';

*-- arguments;

dim = f 4 4g;
vnames = f'Hair' 'Eye'g;
lnames = f'Black' 'Brown' 'Red' 'Blond',

'Brown' 'Blue' 'Hazel' 'Green'g;
table = f68 119 26 7, 20 84 17 94, ... g;
*-- globals;

title= 'Mosaic displays: Sample data sets';

run mdinit; *-- for stand-alone doc;

margins = 'rc+';

run md2html(dim, table, vnames, lnames, tabid, caption);

run mdfini; *-- for stand-alone doc;

A variety of global variables control table options. For example, the
the statementmargins = 'rc+'; above adds row (r) and column
(c) totals (+) to the table display. Other options control the style
(background color or font) used for variable names, table margins
and cell entries.

vstyle = 'bgcolor=#cccccc'; * variable names gray;

tstyle = 'bgcolor=#ccffcc'; * totals light green;

Figure 4 is an example of a table produced using theMD2HTML

module. In this version, used to display sample datasets for the
Mosaics CGI web applet (www.math.yorku.ca/SCS/Online/
mosaics), each cell is colored according to the Pearson residual
from a model of independence, giving a tabular analog of the mo-
saic display.

Figure 4: Hair color, eye color data, as and HTML table. Cells
colored according to residual from independence.

4.3 LATEX output

Attractive as HTML tables may be, they are hard to include in pub-
lications. An equivalent module,MD2TEX producesn-way tables in
LATEX suitable for inclusion in a document. Most of the tables in
VCD were generated automatically usingMD2TEX and other tools
described here.

Table 3: Survival on the Titanic. Table cells shaded according to
residuals from model of mutual independence.

Class
Survive Age Sex 1st 2nd 3rd Crew

Died
Adult

Male 118 154 387 670
Female 4 13 89 3

Child
Male 0 0 35 0
Female 0 0 17 0

Survived
Adult

Male 57 14 75 192
Female 140 80 76 20

Child
Male 5 11 13 0
Female 1 13 14 0

As with the HTML version, it is relatively easy to fit a loglinear
model, and shade each cell according to its departure from indepen-
dence, as shown in Table 3.

5 Getting data in and out of SAS/IML

Small or moderate sized contingency tables may be easily entered
directly in SAS/IML, as illustrated in Section 1. For more general
applications, however, it is useful to have ways to read multidimen-
sional arrays in SAS/IML from a SAS dataset, and to produce an
output dataset from such an array.

5.1 Data import
The moduleREADTAB creates ann-way array from the dataset
titanic shown earlier. The first three arguments are the name
of the dataset, the name of the variable containing the table values,
and a character vector containing the names of the factor variables.
The correspondingtable, levels, andvname arrays are returned.

vnames = fclass gender age survivedg;
run readtab('titanic','count', vnames, table, dim, lnames);

The order of the table variables is taken from the order of the ob-
servations in the dataset, rather than as listed invnames. This is
analogous to the use of the optionorder=data in PROC FREQ and
other SAS procedures. The first variable is the one which varies
most rapidly in the input dataset.

The READTAB module can also read two or more multidimen-
sional arrays with the same structure. For example, we might have a
dataset of crop yields, classified by Variety, Site, and Year, together
with the residuals from some model. Multiple response variables
are read when the second argument is a character vector of names:

resp = fyield residg;
vnames = fvariety year siteg;
run readtab('crops', resp, vnames, table, dim, lnames);

yield = table[,1];

resid = table[,2];

The separate responses are returned as columns of thetable vari-
able.

5.2 Data export
We can also define modules to export ann-way array to a SAS
dataset, or to a text data file for processing with some other applica-
tion. The moduleMD2DS, for example, creates a SAS dataset named
by theOUT parameter. The datasetis exactly in the form shown for
the Titanic data in Section 1.

start md2ds(dim, table, vnames, lnames, out);

run md2var(dim, table, vnames, lnames, labels, count);

vn = rowcat(vnames+' ');

do i=1 to ncol(labels);

call execute(vnames[i], '= labels[,i];');

end;

vars = ' var f' + vn + ' countg';
call execute('create ', out, vars, '; append;');

finish;

(The moduleMD2VAR ravels the frequency table into a column vec-
tor, COUNT, and creates a conforming matrixLABELS of the factor
levels for each cell.)

In VCD this was used for analysis of frequency data usingPROC

GENMOD andPROC CATMOD, using data stored in SAS/IML modules.
Similar routines were used to exportn-way data to Lisp-form, for
analysis withLisp-Stat(Tierney, 1990) andViSta(Young, 1994).

A Program Listings

The TRANSPOS module
start transpos(dim, table, vnames, lnames, order);

if nrow(order) =1 then order = t(order);

if type(order)='C' then do k=1 to nrow(order);

ord = ord // loc(upcase(order[k,])= upcase(vnames));

end;

else ord = order;

*-- Dont bother if order = 1 2 3 ... ;

if all(row(ord)=1:ncol(row(ord))) then return;

if nrow(dim) =1 then dim = t(dim);

if nrow(vnames)=1 then vnames= t(vnames);

run marg(loc,newtab,dim,table,ord);

table = row(newtab);

dim = dim[ord,];

vnames = vnames[ord,];

lnames = lnames[ord,];

finish;

start row (x);

*-- function to convert a matrix into a row vector;

if (nrow(x) = 1) then return (x);

if (ncol(x) = 1) then return (x`);

n = nrow(x) * ncol(x);

return (shape(x,1,n));

finish;

The REDUCE module
start reduce(dim,table,vnames,lnames, config, op, expand);

if nrow(dim) =1 then dim = t(dim);

if nrow(vnames)=1 then vnames= t(vnames);

if ncol(config)=1 then config = t(config);

*-- order factors to put 'config' dimensions first;

others = remove(1:nrow(dim), config);

ord = config || others ;

nd = dim[ord];

nc = nrow(config);

no = nrow(others);

nt = nrow(table) || ncol(table);

tab = table;

vn = vnames;

ln = lnames;

dm = dim;

*-- make the dimension(s) to be reduced as columns;

dotrans = any(ord ^= 1:nrow(dim));

if dotrans then do;

run transpos(dm, tab, vn, ln, ord);

end;

tab = shape(tab, 0, (dim[config,])[#]);

if no=0 then tab=t(tab);

call execute('t = tab[' + op + ',];');

if expand then do;

tab = repeat(t, nrow(tab), 1);

if dotrans then do;

*-- reorder by anti-ranks of original order vector;

r = rank(row(ord));

neword = r;

neword[,r]=1:ncol(row(ord));

run transpos(dm, tab, vn, ln, neword);

end;

tab = shape(tab, nt[1], nt[2]);

end;

else do;

vn = vnames[config];

ln = lnames[config,];

dm = dim[config];

tab = t;

end;

finish;

Further information
SAS/IML programs, associated macros, and sample datasets for
mosaic displays and multidimensional arrays may be found on my
web site,www.math.yorku.ca/SCS/friendly.html.

Michael Friendly
Psychology Department, York University
4700 Keele Street
Toronto, ON, Canada M3J 1P3
friendly@yorku.ca

References

Friendly, M. Mosaic displays for loglinear models. InASA, Pro-
ceedings of the Statistical Graphics Section, pp. 61–68, Alexan-
dria, VA, 1992a.

Friendly, M. User’s guide for MOSAICS. Technical Report 206,
York University, Psychology Dept, 1992b.http://www.math.
yorku.ca/SCS/mosaics.html.

Friendly, M. Mosaic displays for multi-way contingency tables.
Journal of the American Statistical Association, 89:190–200,
1994.

Friendly, M. Extending mosaic displays: Marginal, conditional,
and partial views of categorical data.Journal of Computational
and Statistical Graphics, 8:373–395, 1999a.

Friendly, M. Visualizing Categorical Data. SAS Institute, Cary,
NC, 1999b. In press.

Friendly, M. Visualizing categorical data. In Sirken, M., Herrmann,
D., Schechter, S., Schwarz, N., Tanur, J., and Tourangeau, R.,
editors,Cognition and Survey Research, chapter 20, pp. 319–
348. John Wiley and Sons, New York, 1999c.

Snee, R. D. Graphical display of two-way contingency tables.The
American Statistician, 28:9–12, 1974.

Tierney, L.LISP-STAT: An Object-Oriented Environment for Statis-
tical Computing and Dynamic Graphics. John Wiley and Sons,
New York, 1990.

Young, F. W. ViSta: The visual statistics system. Technical Report
RM 94-1, L.L. Thurstone Psychometric Laboratory, UNC, 1994.

