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Abstract

This paper first illustrates the use of mosaic displays and other graphical methods for the anal-
ysis of multiway contingency tables. We then introduce several extensions of mosaic displays
designed to integrate graphical methods for categorical data with those used for quantitative data.

For example, the scatterplot matrix shows all pairwise (marginal) views of a set of variables in
a coherent display. One analog for categorical data is a matrix of mosaic displays showing some
aspect of the bivariate relation between all pairsof variables. The simplest case shows the marginal
relation for each pair of variables. Another case shows the conditional relation between each pair,
with all other variablespartialled out. For quantitativedata this represents (a) a visualization of the
conditional independence relations studied by graphical models. and (b) a generalization of partial
residual plots.

The conditioning plot, orcoplotshows a collection of (conditional) views of several variables,
conditioned by the values of one or more other variables. A direct analog of the coplot for cate-
gorical data is an array of mosaic plots of the dependence among two or more variables, stratified
by the values of one or moregivenvariables. Each such panel then shows thepartial associations
among the foreground variables; the collection of such plots show how these associations change
as the given variables vary.
Key words: categorical data, conditional independence, coplots, correspondence analysis, graph-
ical models, log-linear models, scatterplot matrix

1 Introduction

Graphical methods for quantitative data are well-developed, and widely used in both data analysis
(e.g., detecting outliers, verifying model assumptions) and data presentation. Graphical methods for
categorical data, however, are only now being developed. Many of these are specialized for particular
types of tables, e.g.,2� 2 � k tables (fourfold display),r� 3 tables (trilinear plots), two-way tables
(sieve diagram), most are not readily available in standard software, and they are not widely used.

For some time I have been working on graphical methods for categorical data which aim to be
comparable in scope to those available for quantitative data, including exploratory methods, and plots
for model-based methods. In this paper I firstillustrate the use of mosaic displays and other graphical
methods for the analysis of several multiway contingency tables. Second, I introduce several exten-
sions of mosaic displays designed to integrate graphical methods for categorical data with those used
for quantitative data.

�Paper presented at the Workshop on “Data Visualization in Statistics”, July 6-10, 1998, held at Drew University. This
work is supported by Grant 8150 from the National Sciences and Engineering Research Council of Canada.
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One essential difference between quantitative data and categorical data lies in the nature of the
natural visual representation (Friendly, 1995, 1997). For quantitative, magnitude can be represented
by length (in a bar chart) or by position along a scale (dotplots, scatterplots). When the data are
categorical, design principles of perception, detection, and comparison (Friendly, 1998) suggest that
frequenciesare most usefully represented as areas.

One final introductory point: the graphics shown here are, of necessity, static graphs, designed
to show both the data and some model-based analysis. Their ultimate use will, I believe, be most
productive as interactive graphics tightly coupled with the model-building methods themselves. One
needs to design good widgets first, however, before learning how to employ them most effectively.

2 Fourfold Display

One specialized graphical method using area as the visual mapping of cell frequency is the “fourfold
display” (Friendly, 1994a,c, Fienberg, 1975) designed for the display of2�2 (or 2�2� k) tables. In
this display the frequencynij in each cell of a fourfold table is shown by a quarter circle, whose radius
is proportional to

p
nij , so the area is proportional to the cell count.

For a single2�2 table the fourfold display described here also shows the frequenciesby area, but
scaled to depict the sample odds ratio,�̂ = (n11n22)=(n12n21). An association between the variables
(� 6= 1) is shown by the tendency of diagonally opposite cells in one direction to differ in size from
those in the opposite direction, and the displayuses coloror shading to showthis direction. Confidence
rings for the observed� allow a visual test of the hypothesisH0 : � = 1. They have the property that
the rings for adjacentquadrants overlapiff the observed counts are consistent with the null hypothesis.

To illustrate, Figure1 shows aggregate data on applicants to graduate school at Berkeley for the
six largest departments in 1973 classified by admission and sex. At issue is whether the data show
evidence of sex bias in admission practices (Bickel et al., 1975). The figure shows the observed cell
frequenciesnumerically in the corners of the display. Thus, there were 2691male applicants, of whom
1193 (44.4%) were admitted, compared with1855 female applicants of whom 557 (30.0%) were
admitted. Hence the sampleodds ratio, Odds (AdmitjMale) / (AdmitjFemale) is 1.84 indicating that
males were almost twice as likely to be admitted.

The frequenciesdisplayedgraphically by shaded quadrants in Figure1are not the raw frequencies.
Instead, they have been standardized (by iterative proportional fitting) so that all table margins are
equal, while preserving the odds ratio. Each quarter circle is then drawn to have an area proportional
to this standardized cell frequency. This makes it easier to see the association between admission and
sex without being influenced by the overall admission rate or the differential tendency of males and
females to apply. With this standardization the four quadrants will align when the odds ratio is 1,
regardless of the marginal frequencies.

The shaded quadrants in Figure1 do notalign and the 99% confidence rings around each quadrant
do not overlap, indicating that the odds ratio differs significantly from 1—putative evidence of gender
bias. The width of the confidence rings gives a visual indication of the precision of the data—if we
stopped here, we might feel quite confident of this conclusion.

2.1 Multiple strata

In the case of a2 � 2 � k table, the last dimension often corresponds to strata or populations, and it
is typically of interest to see if the association between the first two variables is homogeneous across
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Figure 1: Four-fold display for Berkeley admissions: Evidence for sex bias? The area ofeach shaded
quadrant shows the frequency, standardized to equate the margins for sex and admission. Circular arcs
show the limits of a 99% confidence interval for the odds ratio.

strata. The fourfold display is designed to allow easy visual comparison of the pattern of association
between two dichotomousvariablesacross two or more populations.

For example, the admissions data shown in Figure1 were aggregated over a sample of six de-
partments; Figure2 displays the data for each department. The departments are labelled so that the
overall acceptance rate is highest for Department A and decreases to Department F. Again each panel
is standardized to equate the marginals for sex and admission. This standardization also equates for
the differential total applicants acrossdepartments, facilitating visual comparison.

Surprisingly, Figure2 shows that, for five of the six departments, the odds of admission is es-
sentially identical for men and women applicants. Department A appears to differs from the others,
with women approximately 2.86 (= (313=19)=(512=89)) timesmore likely to gain admission. This
appearance is confirmed by the confidence rings, which arejoint 99% intervals for�c in Figure2.

This result, which contradicts the display for the aggregate data in Figure1, is a nice example
of Simpson’s paradox. The resolution of this contradiction can be found in the large differences in
admission rates among departments. Men and women apply to different departments differentially,
and in these data women apply in larger numbers to departments that have a low acceptance rate. The
aggregate results are misleading because they falsely assume men and women are equally likely to
apply in each field.1

1This explanation ignores the possibility of structural bias against women, e.g., lack of resources allocated to departments
that attract women applicants.
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Figure 2: Fourfold display of Berkeley admissions, by department. In each panel the confidence rings
for adjacent quadrants overlap if the odds ratio for admission and sex does notdiffer significantly from
1. The data in each panel have been standardized as in Figure1.

2.2 Visualization principles

An important principle in the display of large, complex datasets iscontrolled comparison—we want
to make comparisons against a clear standard, with other things held constant. The fourfold display
differs from a pie chart in that it holds the angles of the segments constant and varies the radius,
whereas the pie chart varies the angles and holds the radius constant. An important consequence is
that we can quite easily compare a series of fourfold displays for different strata, since corresponding
cells of the table are always in the same position. As a result, an array of fourfold displays serve the
goals of comparison and detection better than an array of pie charts. Moreover, it allows the observed
frequencies to be standardized by equating either the row or column totals, while preserving the odds
ratio. In Figure2, for example, the proportion of men and women, and the proportion of accepted
applicants were equated visually in each department. This providesa clear standard which also greatly
facilitates controlled comparison.

Another principle isvisual impact—we want the important features of the display to be easily
distinguished from the less important (Tukey, 1993). Figure2 distinguishes the one department for
which the odds ratio differs significantlyfrom 1 by shading intensity, even though the same information
can be found by inspection of the confidence rings.
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Table 1: Hair-color eye-color data

Hair Color
Eye
Color Black Brown Red Blond Total

Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220

Total 108 286 71 127 592

3 Mosaic displays

The mosaic display (Friendly, 1992a,1994b, 1997, 1998, Hartigan and Kleiner,1981,1984) is a graph-
ical method for visualizing an n-way contingency table and for building models to account for the as-
sociations among its variables. The frequencies in a contingency table are portrayed as a collection of
rectangular “tiles” whose areas are proportional the cell frequencies; the areas are colored and shaded
to portray the residuals from a specified log-linear model. Whereas goodness-of-fit statistics provide
an overall summary of how well a model fits the data, the mosaic display reveals the pattern of lack of
fit, and helpssuggest an alternative model that may fit better.

The construction of the mosaic is easily understood as a straightforward application of conditional
probabilities. For a two-way table, with cell frequenciesnij , and cell probabilitiespij = nij=n++,
a unit square is first divided into rectangles whose width is proportional to the marginal frequencies
ni+, and hence to the marginal probabilitiespi = ni+=n++. Each such rectangle is then subdivided
horizontally in proportion to the conditional probabilities of the second variable given the first,pj ji =

nij=ni+. Hence the area of eachtile is proportional to the observed cell frequency and probability,

pij = pi � pj ji =

�
ni+
n++

�
�
�
nij
ni+

�
(1)

For example, Table1 shows data on the relation between hair color and eye color among 592
subjects (students in a statistics course) collected bySnee(1974). The Pearson�2 for these data is
138.3 with 9df , indicating substantial departure from independence.

The basic two-way mosaic for these data, shown in Figure3, is then similar to a divided bar chart.
If hair color and eye color were independent,pij = pi � pj, and then the tiles ineach row would all
align. This is shown in Figure4, which shows a mosaic constructed from the expected frequencies
mij = ni+n+j=n++, under independence.

3.1 Design goals and visualization principles

One important design goal for visualization methods for categorical data is to serve various needs in
the analysis of contingency tables (Friendly, 1998):

� reconnaissance—a preliminary examination, or an overview of a possibly complex terrain;
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Figure 3: Basic mosaic display for hair-color and
eye color data. The area of each rectangle is pro-
portional to the observed frequency in that cell.
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Figure 4: Expected frequencies under indepen-
dence. The tiles align when the variables are in-
dependent.

� exploration—help detect patterns or unusual circumstances, or to suggest hypotheses;

� model building & diagnosis—critique a fitted model as a reasonable statistical summary.

Enhancements to the basic mosaic designed to meet these needs are described below.

3.1.1 Enhanced mosaics

The enhanced mosaic display (Friendly, 1992a, 1994b) achieves greater visual impact by using color
and shading to reflect the size of the residual from independence and by reordering rows and columns
to make the pattern of association more coherent. The resulting display serves exploratory goals (by
showing the pattern of observed frequencies in the full table), and model building goals (by displaying
the residuals from a given log-linear model).

Figure5 gives the extended the mosaic plot, showing the standardized (Pearson) residual from
independence,dij = (nij�mij)=

p
mij by the colorand shading of each rectangle: cells with positive

residuals are outlined with solid lines and filled with slanted lines; negative residuals are outlined with
broken lines and filled with grayscale. The absolute value of the residual is portrayed by shading
density: cells with absolute values less than 2 are empty; cells withjdijj � 2 are filled; those with
jdijj � 4 are filled with a darker pattern. Under the assumption of independence, these values roughly
correspond to two-tailed probabilitiesp < :05 andp < :0001 that a given value ofjdijj exceeds 2 or
4.2

When the row or column variables are unordered, we are also free to rearrange the correspond-
ing categories in the plot to help show the nature of association. For example, in Figure5, the eye

2For exploratory purposes, we do not usually make adjustments (e.g., Bonferroni) for multiple tests because the goal is
to display the pattern of residuals in the table as a whole. However, the number and values of these cutoffs can be easily set
by the user.
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Figure 5: Extended mosaic, reordered and shaded. The two levels of shading density correspond to
standardized residuals greater than 2 and 4 in absolute value.

color categories have been permuted so that the residuals from independence have an opposite-corner
pattern, with positive values running from bottom-left to top-right corners, negative values along the
opposite diagonal. Coupled with size and shading of thetiles, the excess in the black-brown and
blond-blue cells, together with the underrepresentation of brown-haired blonds and people with black
hair and blue eyes is now quite apparent. Though the table was reordered based on thedij values, both
dimensions in Figure5 are ordered from dark to light, suggestingan explanation for the association. In
this example the eye-color categories could be reordered by inspection. A general method (Friendly,
1994b) is to sort the categories by their scores on the largest dimension in a (correspondence analysis)
singular value decomposition of residuals.

3.1.2 n-way tables

Another design goal is that graphical methods extend naturally to three-way and higher-way tables, in
much the same way that graphical methods for quantitative data do. For ann-way table, with variables
A; B; C; : : :, the construction of the mosaic generalizes recursively to

pijk`��� =

fABgz }| {
pi� pj ji� pkjij| {z }

fABCg

� p`jijk � � � � (2)

The braces in Eqn. (2) are meant to suggest that the first two terms provide a mosaic for the marginal
frequencies of variablesA andB, the first three terms give a mosaic for thefABCg marginal table,
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and so forth, up to the display of the fulln-way table.
For example, imagine that each cell of the two-way table for hair and eye color is further classified

by one or more additional variables—sex and ethnicity, for example. Then each rectangle can be
subdivided horizontally to show the proportion of males and females in that cell, and each of those
horizontal portionscan be subdivided vertically to show the proportions of people of each ethnicity in
the hair-eye-sex group.

Figure6showsthe mosaic for the three-waytable, with hair andeye colorgroupsdividedaccording
to the proportions of Males and Females: We see that there is no systematic association between sex
and the combinations of hair and eye color—except among blue-eyed blonds, where there are an
overabundance of females. (Do they have more fun?)
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Figure 6: Three-way mosaic display for hair color, eye color, and sex. The categories of sex are
crossed with those of hair color, but only the first occurrence is labeled. Residuals from the model
of joint independence,[HE] [S] are shown by shading. The only lack of fit is an overabundance of
females among blue-eyed blonds.

3.2 Fitting models

When three or more variables are represented in the mosaic, we can fit different models of “indepen-
dence” and display the residuals from each. We treat these as null or baseline models, which may not
fit the data particularly well. The deviations of observed frequencies from expected ones, displayed by
shading, will often suggest terms to be added to to an explanatory model that achieves a better fit.

For a three-way table, with variablesA, B andC, some of the possible modelsare described below
and summarized in Table2. I use[ ] notation to list the high-order terms in a hierarchical log-linear
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Table 2: Fitted margins, model symbols and interpretations for somehypotheses for a three-way table

Fitted Model Independence Association
Hypothesis margins symbol Interpretation graph

H1 ni++; n+j+; n++k [A][B][C] A ? B ? C A B

C

H2 nij+; n++k [AB][C] A; B ? C A B

C

H3 ni+k; n+k [AC][BC] A ? B jC A B

C

H4 nij+; ni+k; n+jk [AB][AC][BC] - A B

C

model; these correspond to the margins of the table which are fitted exactly. Any other associations
present in the data will appear in the pattern of residuals. Here,A ? B is read, “A is independent
of B”. Table2 also depicts the relations among variables as an association graph, where associated
variables are connected by and edge.

H1: Mutual independence The model of mutual independence,A ? B ? C, asserts that all joint
probabilities�ijk are products of the one-way marginal probabilities: �ijk = �i++ �+j+ �++k.
This corresponds to the log-linear model[A] [B] [C]. Fitting this model leaves all higher terms,
and henceall association among the variables, in the residuals.

H2: Joint independence The model in which variableC is jointly independent of variablesA and
B, (A; B ? C), has�ijk = �ij+ �++k:, and corresponds to the log-linear model[AB] [C].
Residuals from this model showthe extent to which variableC is related to the combinationsof
variablesA andB, but they do not showanyassociation betweenA andB, since that association
is fitted exactly.

H3: Conditional independence Two variables, sayA andB, are conditionally independentgiventhe
third (C) if A andB are independent when we control forC, symbolized asA ? B jC. This
means that conditional probabilities,�ij jk, obey�ij jk = �i+jk �+j jk:. The corresponding log-
linear models is denoted[AC] [BC]. When this model is fit, the mosaic shows the conditional
associations between variablesA andB, controlling forC, but does not show the associations
betweenA andC, orB andC.

H4: No three-way interaction For this model, no pair is marginally or conditionally independent,
so there is no independence interpretation. However, the partial association between any two
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variables is the same at each level of the third variable. The corresponding log-linear model
formula is [AB] [AC] [BC], indicating that all two-way margins are fit exactly and so are not
shown in the residuals. Only a possible three-way association appears in the mosaic.

For example, with the data from Table1 broken down by sex, fitting the joint-independence model
[HairEye][Sex]allows us to see the extent to which the joint distribution of hair-color and eye-color is
associated with sex. For this model, the likelihood-ratioG2 is 19.86 on 15df (p= :178), indicating an
acceptable overall fit. The three-way mosaic for this modelwas shown in Figure6. Any othermodelfit
to this table will have the same tiles in the mosaic since the areas depend on the observed frequencies;
the residuals, and hence the shading of the tiles will differ.

3.2.1 Sequential plots and models

The mosaic display is constructed in stages, with the variables listed in a given order. At each stage,
the procedure fits a (sub)model to the marginal subtable defined by summing over all variables not
yet entered. For example for a three-way table,fABCg, the marginal subtablesfAg andfABg are
calculated in the process of constructing the three-way mosaic. ThefAg marginal table can be fit to
a model where the categories of variable A are equiprobable (or some other discrete distribution); the
independence model can be fit to thefABg subtable, and so forth. The series of plots can give greater
insight into the relationships among all the variables than a single plot alone.

Moreover, the series of mosaic plots fitting submodels of joint independence to the marginal sub-
tables have the special property that they can be viewed as partitioning thehypothesis of mutual inde-
pendence in the full table (Friendly, 1994b, Goodman, 1970).

For example, for the hair-eye data, the mosaic displays for the[Hair] [Eye] marginal table (Figure5)
and the[HairEye] [Sex] (Figure6) table can be viewed as representing the partition

Model df G2

[Hair] [Eye] 9 146.44
[Hair, Eye] [Sex] 15 19.86
[Hair] [Eye] [Sex] 24 155.20

This partitioning scheme for sequential models of joint independence extends directly to higher-
way tables. TheMOSAICS program (Friendly, 1992b)3 implements a variety of schemes for fitting a
sequential series of submodels, including mutual independence, joint independence, conditional inde-
pendence, partial independence and markov chain models, as shown in Table3.

3.3 Example: Survival on theTitanic

There have been few marine disasters resulting in the staggering loss of life which occurred in the
sinking of theTitanic on April 15, 1912 and (perhaps as a result) few that are so widely known by the
public. It is surprising, therefore, that neither the exact death toll from this disasternor the distributions
of death among the passengers and crew are universally agreed.Dawson(1995, Table 2) presents the
cross-classification of 2201 passengers and crew on theTitanic by Age, Gender, Class (1st, 2nd, 3rd,
Crew) shown in Table4 and describes his efforts to reconcile various historical sources. Let us see
what we can learn from this data set.

3http://www.math.yorku.ca/SCS/mosaics.html
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Table 3: Log-linear models corresponding to the variousfittype values recognized byMOSAICS.

fittype a 3-way b 4-way 5-way
MUTUAL [A] [B] [C] [A] [B] [C] [D] [A] [B] [C] [D] [E]

JOINT [AB] [C] [ABC] [D] [ABCE] [E]

JOINT1 [A] [BC] [A] [BCD] [A] [BCDE]

CONDIT [AC] [BC] [AD] [BD] [CD] [AE] [BE] [CE] [DE]

CONDIT1 [AB] [AC] [AB] [AC] [AD] [AB] [AC] [AD] [AE]

PARTIAL [AC] [BC] [ACD] [BCD] [ADE] [BDE] [CDE]

MARKOV1 [AB] [BC] [AB] [BC] [CD] [AB] [BC] [CD] [DE]

MARKOV2 [A] [B] [C] [ABC] [BCD] [ABC] [BCD] [CDE]

aIn all cases, the model[A] [B] is fit to a two-way table or marginal table.
bThe lettersA;B;C; :: : refer to the table variables in the order of entry into the mosaic display.

Examining the series of mosaics for the variablesordered Class, Gender, Age, Survival will show
the relationships among the background variables and how these are related to survival. The letters
C; G; A; S respectively are used to refer to these variables below.

Figure7 and Figure8 show the two-way and three-way plots among the background variables.
Figure7 shows that the proportion of males decreases with increasing economic class, and that the
crew was almost entirely male. The three-way plot (Figure8) shows the distribution of adults and
children among the Class-Gender groups. The residuals display the fit of a model in which Age is
jointly independent of the the Class-Gender categories. Note that there were no children among the
crew, and the overall proportion of children was quite small (about 5 %). Among the passengers, the
proportion of children is smallest in first class, largest in third class. The only large positive residuals
correspond to a greater number of children among the 3rd class passengers, perhaps representing
families travelling or immigrating together.

The four-way mosaic, shown in Figure9, fits the model[CGA][S] which asserts that survival is
independent of Class, Gender and Age. This is the minimal null model when the first three variables
are explanatory. It is clear that greater proportions of women survived than men in all classes, but
with greater proportions of women surviving in the upper two classes. Among males the proportion
who survived also increases with economic class. However, this model fits very poorly (G2(15) =

671:96), and we may try to fit a more adequade model by adding associations between survival and
the explanatory variables.

Adding a main effect of each of Class, Gender and Age on Survival amounts to fitting the model
[CGA][CS][GS][AS]. That is, each of the three variables is associated with survival, but have inde-
pendent, additive effects. The mosaic for this model, shown in Figure10. The fit of this model is much
improved (�G2(5) = 559:4), but still does not represent an adequate fit (G2(10) = 112:56). There
are obviously interactions among Class, Gender and Age on their impact on survival, some of which
we have already noted.

Noting the rubric of “women and children first”, we next fit the model[CGA][CS][GAS] in which
Age and Gender interact in their influenceon survival. The mosaic for this model is shown in Figure11.
Adding the association of Age and Genderwith survivalhas improved the model slightly, however the
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Table 4: Survival on the Titanic

Class
Survived Age Gender 1st 2nd 3rd Crew

No Adult Male 118 154 387 670
Yes 4 13 89 3

No Child 0 0 35 0
Yes 0 0 17 0

No Adult Female 57 14 75 192
Yes 140 80 76 20

No Child 5 11 13 0
Yes 1 13 14 0

fit is still not good (G2(9) = 94:54). If we add the interaction of Class and Gender to this (the model
[CGA][CGS][GAS]) the The likelihood-ratio chi-square is reduced substantially (G2(6) = 37:26),
but the lack of fit is still significant.

Finally, we try a model in which Class interacts with both Age and Gender to give the model
[CGA][CGS][CAS], whose residuals are shown in Figure12. The likelihood-ratio chi-square is now
1.69 with 4 df, a very good fit, indeed.

The import of these figures is clear. Regardless of Age and Gender, lower economic status was
associated with increased mortality; the differences due to Class were moderated, however, by both
Age and Gender. Although women on theTitanic were more likely overall to survive than men, the
interaction of Class and Gender shows that women in 3rd class did not have a significant advantage,
while men in 1st class did compared to men in other classes. The interaction of Class and Age is
explained by the observation that while no children in 1st or 2nd class died, nearly two-thirds in 3rd
class died; for adults, mortality increases progressively as economic class declines. Hence, although
the phrase “women and children first” is melifluous and appeals to our sense of Edwardian chivalry a
more adequate description might be “women and children (according to class), then 1st class men”.

4 Mosaic matrices for categorical data

One reason for the wide usefulness of graphs of quantitative data has been the development of effec-
tive, general techniques for dealing with high-dimensional datasets. The scatterplot matrix shows all
pairwise (marginal) views of a set of variables in a coherent display, whose design goal is to showthe
interdependence among the collection of variablesas a whole, and which allows detection of patterns
which could not readily be discerned from a series of separate graphs. In effect, a multivariate data set
in p dimensions (variables) is shown as a collection ofp(p� 1) two-dimensional scatterplots, each of
which is the projection of the cloud of points on two of the variable axes. These ideas can be readily
extended to categorical data.

A multiway contingency table ofp categorical variables,A; B; C; : : :, also contains the interde-
pendence among the collection of variables as a whole. The saturated log-linearmodel,[ABC : : :] fits
this interdependence perfectly, but is often too complex to describe or understand. By summing the
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Figure 7: Titanic data: Class and Gender
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Figure 8: Titanic data: Class, Gender, Age

table over all variables except two,A andB, say, we obtain a two-variable (marginal) table, showing
the bivariate relationship betweenA andB, which is also a projection of thep-variable relation into
the space of two (categorical) variables. If we do this for allp(p� 1) unordered pairs of categorical
variables and display each two-variable table as a mosaic, we have a categorical analog of the scatter-
plot matrix, called amosaic matrix. Like the scatterplot matrix, the mosaic matrix can accommodate
any number of variables in principle, but in practice is limited by the resolution of our display to three
or four variables.

4.1 MCA and the Burt matrix

The mosaic matrix has another interpretation as a direct visualization of the so-called “Burt matrix”
which forms the basis of multiple correspondence analysis (MCA). Ap-way, J1 � J2 � � � � � Jp
contingency table ofK =

Q
Ji cells can be represented in a vectorof frequenciesn = (n1; : : : ; nK)

T

and aK � pmatrixX whoseith column gives the factor levels for variablei in each cell of the table.
LetZi be theK�Ji indicator (design)matrix corresponding toxi, so thatZi(k; `) = 1() xik = `,
and letZ be theK �Pp Ji partitioned matrix[Z1 jZ2 j : : : jZp].

Then the Burt matrix is the symmetric partitioned matrix

B = ZTdiag(n)Z =

2
664
N[1] N[12] � � �
N[21] N[2] � � �
...

...
.. .

3
775

where each diagonal block,N[i] , is a diagonalmatrix of the one-way marginal frequencies of variable
i and each off-diagonal blockN[ij ] = Z

T

i diag(n)Zj is the two-way marginal contingency table for
variablesi andj, with its transpose inN[ji]. MCA (see, e.g.,Greenacre(1984)) can be defined as an
ordinary correspondence analysis (a singular value decomposition) of the matrixB which produces
scores for the categories of all variables so that the greatest proportion of the pairwise associations in
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Figure 9: Class, Gender, Age, and Survival, Joint
independence
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Figure 10: Main effects of Age, Gender and
Class on Survival

all off-diagonal blocks isaccounted for in a small number of dimensions. The mosaic matrix of these
two-way margins thus provides a visual representation of the Burt matrix,4 and the total amount of
shading in all the individual mosaics portrays the total pairwise associationsdecomposed by MCA.

4.2 Example: Survival on theTitanic

Figure13shows the mosaic matrix for the bivariate relations in theTitanic data. The bottom row and
the rightmost column show the associations between each of the background variables and Survival
collapsing overother variables. There are strong associationsof all three variables, but particularly for
Gender (femalesmore likely to have survived overall) and for Class (“1st” most likely to have survived
overall). Off-diagonal panels show the associations among the classifications of the passengers and
crew. The panel in row3, column 15 is the bivariate relation between Class and Gender, shown earlier
in Figure7. The panels in row 2 show that very few children sailed on theTitanic, and that most were
in 3rd class, and female.

The mosaic matrix in Figure13 may be compared with the the results of an MCA analysis of the
Titanic data. Figure14 shows the 2-dimensional solution. The positions of the category points for
all factors accounts for 50% of the total association (�2(81) = 15533:4), representing all pairwise
interactions among the four factors. The points for each factor have the property that the sum of
coordinates on each dimension, weighted inversely by the marginal proportions, equals zero, so that
high frequency categories (e.g., Adult) are close to the origin. The first dimension is perfectly aligned
with the Gender factor, and also strongly aligned with Survival. The second dimension pertainsmainly
to Class and Age effects. Considering those points which differ from the origin most similarly (in
distance and direction) to the point for Survived, gives the interpretation that survival was associated

4The representation would be complete if the one-way margins where drawn in the diagonal cells.
5Rows and columns in the mosaic matrix are identified as in a table or numerical matrix, with row 1, column 1 in the

upper left corner.
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Figure 12: Main effects + Age*Gender +
Class*Gender on Survival

with being female or upper class or (to a lesser degree) being a child.
The mosaic matrix, although more complex, captures all of the pairwise associations, while the

MCA plot shows only 50% in two dimensions. (A third dimension would account for an additional
17% here.) Most importantly, the pairwise associations are shown explicitly in the mosaic matrix,
while they must be inferred from the positions of category points in the MCA plot.

4.3 Example: Berkeley admissions

Figure15 shows the pairwise marginal relations among the variables Admit, Gender and Department
in the Berkeley data which were examined earlier in fourfold displays (Figure1 and Figure2). The
panel in row 2, column 1 shows that Admission and Gender are strongly associated marginally, as we
saw in Figure1, and overall, males are more often admitted. The diagonally-opposite panel (row 1,
column 2) shows the same relation, splitting first by gender.6

The panels in the third column (and third row) illuminate the explanation for the paradoxical result
(see Figure2) that, within all but department A, the likelihood of admission is equal for men and
women, yet, overall, there appears to be a bias in favor of admitting men (see Figure1) The (1,3) and
(3, 1) panels shows the marginal relation between Admission and Department; departments A and B
have the greatest overall admission rate, departments E and F the least. The (2, 3) panel shows that
men apply in much greater numbers to departments A and B, while women apply in greater numbers
to the departments with the lowest overall rate of admission.

6Note that this is different than just the transpose or interchange of horizontal and vertical dimensions as in the scatterplot
matrix, because the mosaic display splits the total frequency first by the horizontal variable and then (conditionally) by the
vertical variable. The areas of all correspondingtiles are the same ineach diagonally opposite pair, however, as are the
residuals shown by color and shading.
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Figure 13: Mosaic matrix ofTitanic data. Each panel shows the marginal relation, fitting an indepen-
dence model between the row and column variable, collapsed over other variable(s).

4.4 Conditional plot matrices

Several further extensions are now possible. First, we need not show the marginal relation between
each pair of variables in the mosaic matrix. For example, Figure16 shows the pairwiseconditional
relations among these variables. All panels show the same observed frequencies by the areas of the
tiles, buteach fits a model of conditional independence between the row and column variable, with
the remaining variable controlled. Thus, the shading in the (1,2) and (2,1) panels show the fit of the
model [Admit,Dept] [Gender, Dept], which asserts that Admission and Genderare independent, given
(controlling for) department. Except for Department A, this model fits quite well, again indicating
lack of gender bias. The (1,3) and (3,1) panels show the relation between admission and department
controlling for gender, highlighting the differential admission rates across departments.

Second, the analogous conditional matrix plot for quantitative variables is of some interest itself.
For each pair of variables,Xi; Xj, we plot fXi = Xi � cXijothers againstfXj = Xj � cXjjothers,
where “others” is the complementary set excludingXi; Xj. Whittaker(1990) shows thatXi; Xj are
conditionally independent of the othersiff the corresponding element of the inverse covariance matrix
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��1 = f�ijg is zero,

�ij j others= 0 () �ij = 0 (3)

() Xi ? Xjj others

Zero partial correlation plays the same role in graphical models for quantitative variables as two-
way terms in graphical log-linear models. Hence, the conditional scatterplot matrix for quantitative
variables provide a visualization of the pairwise partial correlations among all variables and of the
conditional independence relations studied in Gaussian graphical models. Moreover, when one vari-
able,Y , is a response, the panels in the row forY are just the partial regression (added variable) plots.
The other rows treat each variable in turn as a response, giving a multiway generalization of partial
regression plots.

For example, Figure17showsa conditionalscatterplotmatrix of the well-known Iris data (Anderson,
1935), wherein each panel depicts the partial correlation between row and column variable given the
remainingtwo variables. In the analogousscatterplot matrix of marginal relations (too familiar to most
readers to showhere) all pairs of variablesare positively correlated and the three iris speciesare widely
separated. The conditional plot tells a different and simpler story, however. When other variables are
controlled, pairs consisting of the same flower component (petal vs. sepal) or the same measurement
(length vs. width) are positively correlated, while cross component-measure pairs (e.g., petal width,
sepal length) are negatively correlated.

Hence, for the Iris data, no pair of variables is conditionally independent. Figure18 shows a form
of the independence graph (with line thickness proportional to the magnitude of partial correlation
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Figure 15: Mosaic matrix of Berkeley admissions. Each panel shows the marginal relation, fitting an
independence model.

and line style indicating direction), summarizing the partial correlationsshown explicitly in Figure17.
In the marginal plots, the large differences among species means imply that the 0-order correlations
are poor summaries of the bivariate relations. The conditional plots in Figure17 indicate that the
specieseffects have been removed by partialling other variables, so that the partial correlationsare not
confounded by speciesdifferences.

Third, the framework of the scatterplot matrix can now be used as a general method for display-
ing marginal or conditional relations among a mixture of quantitative and categorical variables. For
marginalplots, pairs ofquantitative variablesare shown as a scatterplot, while pairsof categorical vari-
ables are shown as a mosaic display. Pairs consisting of one quantitative and one categorical variable
can be shown as a set of boxplots for each level of the categorical variable. For conditional plots, we
can fit a pair of generalized linear models, predicting the row and column variables from the others,

g(�i) = xTothers�

g(�j) = xTothers�
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Figure 16: Conditional mosaic matrix of Berkeley admissions. Each panel shows the conditional
relation, fitting a model of conditional independence model between the row and column variable,
controlling for other variable(s)

with an identity link for quantitative variables, and log link for discrete variables. The mixed condi-
tional plot then shows the residualsas in the marginal views.

4.5 Coplots for categorical data

Conditional relations among variables may also be visualized by stratifying the data on the given
variables, rather than by partialling out. For quantitative vaariables, a visually effective device is the
coplotdisplay (Cleveland, 1993).

One analog of the coplot for categorical data is an array of plots of the dependence among two or
more variables, stratified by the values of one or moregivenvariables. Each such panel then shows
thepartial associations among the foreground variables; the collection of such plots show how these
change as the given variables vary. Figure2 is one example of this idea, using the fourfold display to
represent the association in2� 2 tables.

For categorical data, models of independence fit to the strata separately have the useful property
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Figure 17: Conditional scatterplot matrix for Iris data

that they decompose a modelof conditional independencefit to the whole table. Consider, for example,
the model of conditional independence,A ? B jC for a three-way table. This model asserts thatA

andB are independent withineachlevel ofC. Denote the hypothesis thatA andB are independent at
levelC(k) byA ? B jC(k). Then one can show (Anderson, 1991) that

G2
A?B jC =

KX
k

G2
A?B jC(k) (4)

That is, the overallG2 for the conditional independence model with(I � 1)(J � 1)K degrees of
freedom is the sum of the values for the ordinary association betweenA andB over the levels ofC
(each with(I � 1)(J � 1) degrees of freedom). Thus, (a) the overallG2 may be decomposed into
portions attributable to theAB association in the layers ofC, and (b) the collection of mosaic displays
for the dependence ofA andB for each of the levels ofC provides a natural visualization of this
decomposition.

These conditional mosaics have the additional useful property that they adjust automatically for
differing marginal frequencies across the strata, because the area of each partial mosaic is the same.
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This facilitates controlled comparison, allowing us to focus attention on the association of the fore-
ground variables.

Figure19and Figure20show two further examples, using the mosaic display to show the partial
relations [Admit][Dept]given Gender, and[Admit][Gender]givenDept, respectively. Figure20shows
the same results displayed in Figure2: no association between Admission and Gender, except in Dept.
A, where femalesare relatively more likely to gain admission. But one can also see howthe proportion
admitted decreases regularly from Dept. A to F and how the proportion of females changes across
departments. The breakdown of the overallG2 from Eqn. (4) is given in Table5.
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Figure 19: Mosaic coplotof Berkeley admissions, given Gender. Each panelshows the partial relation,
fitting a model of independence model between Admission and Department.

Figure19 shows that there is a very strong association between Admission and Department—
different rates of admission, but also shows two things not seen in other displays: First, thepatternof
association is qualitatively similar for both men and women; second the association is quantitatively
stronger for men than women—larger differences in admission rates acrossdepartments.
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Table 5: Partial tests of independence of Gender and Admission, by Department

Dept df G2 p

A 1 19.054 0.000
B 1 0.259 0.611
C 1 0.751 0.386
D 1 0.298 0.585
E 1 0.990 0.320
F 1 0.384 0.536

Total 6 21.735 0.001
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Figure 20: Mosaic coplot of Berkeley admissions, given Department Each panel shows the partial
relation, fitting a model of independence model between Admission and Gender.

4.6 Summary

Takentogether, mosaic matricesand mosaic coplots extend the use of the mosaic display in simple, but
powerful ways, and provide useful techniques for the graphical display of categorical and quantitative
data within a common framework.
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