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Abstract

This paper first illustrates the use of mosaic displays and other graphical methods for the anal-
ysis of multiway contingency tables. We then introduce several extensions of mosaic displays
designed to integrate graphical methods for categorical data with those used for quantitative data.

For example, the scatterplot matrix shows all pairwise (marginal) views of a set of variablesin
a coherent display. One analog for categorical data is a matrix of mosaic displays showing some
aspect of the bivariate relation between all pairs of variables. The simplest case shows the marginal
relation for each pair of variables. Another case shows timelitional relation between each pair,
with all other variables partialled out. For quantitative data this represents (a) a visualization of the
conditionalindependence relations studied by graphical models. and (b) a generalization of partial
residual plots.

The conditioning plot, ocoplotshows a collection of (conditional) views of several variables,
conditioned by the values of one or more other variables. A direct analog of the coplot for cate-
gorical data is an array of mosaic plots of the dependence among two or more variables, stratified
by the values of one or moggvenvariables. Each such panel then showshgial associations
among the foreground variables; the collection of such plots show how these associations change
as the given variables vary.

Key words: categorical data, conditional independence, coplots, correspondence analysis, graph-
ical models, log-linear models, scatterplot matrix

1 Introduction

Graphical methods for quantitative data are well-developed, and widely used in both data analysis
(e.g., detecting outliers, verifying model assumptions) and data presentation. Graphiuad sfet
categorical data, however, are only now being developed. Many of these are specialized for particular
types of tables, e.gz,x 2 x & tables (fourfold display); x 3 tables (trilinear plots), two-way tables
(sievediagram), most are not readily available in standard software, and they are not widely used.

For some time | have been working on graphical methods for categorical data which aim to be
comparable in scopeto those available for quantitative data, including exploratory methods, and plots
for model-based methods. In this paper | fitlsistrate the use of mosaic displays and other graphical
methods for the analysis of several multiway contingency tablesorfed introduce several exten-
sions of mosaic displays designed to integrate graphical methods for categorical data with those used
for quantitative data.

'Paper presented at the Workshop on “Data Visualization in Statistics”, July 6-10, 1998, held at Drew University. This
work is supported by Grant 8150 from the National Sciences and Engineering Research Council of Canada.



One essential difference between quantitative data and categorical data lies in the nature of the
natural visual representatioRr{endly, 1995 1997. For quantitative, magnitude can be represented
by length (in a bar chart) or by position along a scale (dotplots, scatterplots). When the data are
categorical, design principles of perception, detection, and compaFsendly, 1998 suggest that
frequencies are most usefully represented as areas.

One final introductory point: the graphics shown here are, of necessity, static graphs, designed
to show both the data and some model-based analysis. Their ultimate use will, | believe, be most
productive as interactive graphics tightly coupled with the model-building methods themselves. One
needs to design good widgets first, however, before learning how to employ them most effectively.

2 Fourfold Display

One specialized graphical method using area as the visual mapping of cell frequency is the “fourfold
display” (Friendly, 1994ac, Fienberg1975 designedfor the display afx 2 (or 2 x 2 i k) tables. In

this display the frequenoy;; in each cell of a fourfold table is shown by a quarter circle, whose radius

is proportional to, /;;, so the areais proportional to the cell count.

For a single: 2 table the fourfold display described here also shows the frequencies by area, but
scaled to depictthe sample odds rafics (n11122)/(n12n21). An association between the variables
(# #£ 1) is shown by the tendency of diagonally opposite cells in one direction to differ in size from
thosein the opposite direction, and the displayuses color or shading to show this direction. Confidence
rings for the observed allow a visual test of the hypothedig, : # = 1. They have the property that
the ringsfor adjacentquadrants oveiifighe observed counts are consistent with the null hypothesis.

To illustrate, Figurel shows aggregate data on applicants to graduate school at Berkeley for the
six largest departments in 1973 classified by admission and sex. At issue is whether the data show
evidence of sex bias in admission practidgiskel etal, 1975. The figure shows the observed cell
frequencies numerically in the corners of the display. Thus, there were 2691 male applicants, of whom
1193 (44.4%) were admitted, compared witB55 female applicants of whom 557 (30.0%) were
admitted. Hence the sampieds ratio, Odds (AdnjiMale) / (AdmijfFemale) is 1.84 indicating that
males were almost twice as likely to be admitted.

The frequencies displayedgraphically by shaded quadrants in Figmeanot the raw frequencies.
Instead, they have been standardized (by iterative proportional fitting) so that all table margins are
equal, while preserving the odds ratio. Each quarter circle is then drawn to have an area proportional
to this standardized cell frequency. This makes it easier to see the association between admission and
sex without being influenced by the overall admission rate or the differential tendency of males and
females to apply. With this standardization the four quadrants will align when the odds ratio is 1,
regardless of the marginal frequencies.

The shaded quadrantsin Figurdo notalign and the 99% confidence rings around each quadrant
do not overlap, indicating that the odds ratio differs significantly from 1—putative evidence of gender
bias. The width of the confidence rings gives a visual indication of the precision of the data—if we
stopped here, we might feel quite confident of this conclusion.

2.1 Multiple strata

In the case of & x 2 x k table, the last dimension often corresponds to strata or populations, and it
is typically of interest to see if the association between the first two variables is homogeneous across



Sex: Male

Admit?: Yes
Admit?: No
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Figure 1: Four-fold display for Berkeley admissions: Evidence for sex bias? The azaalwothaded
guadrant showsthe frequency, standardized to equate the margins for sex and admission. Circular arcs
show the limits of a 99% confidence interval for the oddsratio.

strata. The fourfold display is designed to allow easy visual comparison of the pattern of association
between two dichotomous variables across two or more populations.

For example, the admissions data shown in Figurmeere aggregated over a sample of six de-
partments; Figur@ displays the data for each department. The departments are labelled so that the
overall acceptance rate is highest for Department A and decreases to Department F. Again each panel
is standardized to equate the marginals for sex and admission. This standardization also equates for
the differential total applicants across departments, facilitating visual comparison.

Surprisingly, Figure2 shows that, for five of the six departments, the odds of admission is es-
sentially identical for men and women applicants. Department A appears to differs from the others,
with women approximately 2.86=({313/19)/{512/89]) timesmore likely to gain admission. This
appearance is confirmed by the confidence rings, whicfoare99% intervals fot,. in Figure2.

This result, which contradicts the display for the aggregate data in Fiyugea nice example
of Simpson’s paradox. The resolution of this contradiction can be found in the large differences in
admission rates among departments. Men and women apply to different departments differentially,
andin these data women apply in larger numbers to departments that have a low acceptance rate. The
aggregate results are misleading because they falsely assume men and women are equally likely to
applyin each field.

This explanation ignores the possibility of structural bias against women, e.g., lack of resources allocated to departments
that attract women applicants.
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Figure 2: Fourfold display of Berkeley admissions, by department. In each panel the confidence rings
for adjacent quadrants overlap if the oddsratio for admission and sex does notdiffer significantly from
1. The data in each panel have been standardized as in Higure

2.2 Visualization principles

An important principle in the display of large, complex datasetistrolled comparisor-we want

to make comparisons against a clear standard, with other things held constant. The fourfold display
differs from a pie chart in that it holds the angles of the segments constant and varies the radius,
whereas the pie chart varies the angles and holds the radius constant. An important consequence is
thatwe can quite easily compare a series of fourfold displays for different strata, since corresponding
cells of the table are always in the same position. As a result, an array of fourfold displays serve the
goals of comparison and detection better than an array of pie charts. Moreover, it allows the observed
frequencies to be standardized by equating either the row or column totals, while preserving the odds
ratio. In Figure2, for example, the proportion of men and women, and the proportion of accepted
applicants were equated visually in each department. This providesa clear standard which also greatly
facilitates controlled comparison.

Another principle isvisual impact—we want the important features of the display to be easily
distinguished from the less importafukey, 1993. Figure2 distinguishes the one department for
which the oddsratio differs significantlyfrom 1 by shading intensity, even though the same information
canbe found by inspection of the confidence rings.



Table 1: Hair-color eye-color data

Hair Color

Eye

Color Black Brown Red Blond Total
Green 5 29 14 14 64
Hazel 15 54 14 1 93
Blue 20 84 17 941 215
Brown 68 119 26 7l 220
Total 108 286 71 127 592

3 Mosaicdisplays

The mosaic displayHriendly, 1992a1994H 1997 1998 Hartigan and Kleiner1981,1984 is agraph-
ical method for visualizing an n-way contingency table and for building models to account for the as-
sociations amongits variables. The frequenciesin a contingency table are portrayed as a collection of
rectangular “tiles” whose areas ar@portional the cell frequencies; the areas are colored and shaded
to portray the residuals from a specified log-linear model. Whereas goodness-of-fit statistics provide
an overall summary of how well a model fits the data, the mosaic display reveals the pattern of lack of
fit, and helps suggest an alternative model that may fit better.

The construction of the mosaic is easily understood as a straightforward application tibe@hd
probabilities. For a two-way table, with cell frequencigs, and cell probabilitieg,;; = ni;/n44,
a unit square is first divided into rectangles whose width is proportional to the marginal frequencies
ni4, and hence to the marginal probabilitiggs= n;; /n; 4. Each such rectangle is then subdivided
horizontally in proportion to the conditional probabilities of the second variable given thesfifst;
niifni;. Hencethe area of eatite is proportional to the observed cell frequency and probability,

Pij = Pi K P = (:'T:) X (:I—'i) 1)

For example, Tabléd shows data on the relation between hair color and eye color among 592
subjects (students in a statistics course) collecte8rge(1974. The Pearson* for these data is
138.3 with 94f, indicating substantial departure from independence.

The basic two-way mosaic for these data, shownin Figuigthen similar to a divided bar chart.

If hair color and eye color were independent, = p; % p;, and then the tiles ieach row would all
align. This is shown in Figuré, which shows a mosaic constructed from the expected frequencies
mi; = 14147 /144, underindependence.

3.1 Design goals and visualization principles

One important design goal for visualization methods for categorical data is to serve various needs in
the analysis of contingency tablégiendly, 1999:

# reconnaissance-a preliminary examination, or an overview of a possibly complex terrain;
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Figure 3: Basic mosaic display for hair-color arfeigure 4: Expected frequencies under indepen-
eye colordata. The area of each rectangle is pdence. The tiles align when the variables are in-
portional to the observed frequency in that cell. dependent.

s exploration—help detect patterns or unusual circumstances, or to suggest hypotheses;
s model building & diagnosis—critique a fitted model as a reasonable statistical summary.

Enhancements to the basic mosaic designedto meet these needs are described below.

3.1.1 Enhanced mosaics

The enhanced mosaic displdyriendly, 1992219940 achieves greater visualimpact by using color

and shadingto reflect the size of the residual from independence and by reordering rows and columns
to make the pattern of association more coherent. The resulting display serves exploratory goals (by
showing the pattern of observed frequenciesin the full table), and model building goals (by displaying
the residuals from a givenlog-linear model).

Figure5 gives the extended the mosaic plot, showing the standardized (Pearson) residual from
independencel,;; = (n; — mi;]/./mi; by the colorand shading of each rectangle: cells withtjves
residuals are outlined with solid lines and filled with slanted lines; negative residuals are outlined with
broken lines and filled with grayscale. The absolute value of the residual is portrayed by shading
density: cells with absolute values less than 2 are empty; cells|dith> 2 are filled; those with
|di;| > 4 are filled with a darker pattern. Under the assumption of independence, these values roughly
corre_spond to two-tailed probabilitigs<; .05 andp <« .0001 that a givenvalue ofd;;| exceeds 2 or
4?2

When the row or column variables are unordered, we are also free to rearrange the correspond-
ing categories in the plot to help show the nature of association. For example, in Bjgheeye

2For exploratory purposes, we do not usually make adjustments (e.g., Bonferroni) for multipleetstsédthe goal is
to display the pattern of residuals in the table as a whole. However, the number and values of these cutoffs can be easily set
by the user.
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Figure 5: Extended mosaic, reordered and shaded. The two levels of shading density correspond to
standardized residuals greater than 2 and 4 in absolute value.

color categories have been permuted so that the residuals from independence have an opposite-corner
pattern, with positive valuesinning from bottom-left to top-right corners, negative values along the
opposite diagonal. Coupled with size and shading oftiles, the excess in the black-brown and
blond-blue cells, together with the underrepresentation of brown-haired blonds and people with black
hair and blue eyesis now quite apparent. Though the table was reordered basef} pnethees, both
dimensionsin Figuré are ordered from dark to light, suggestingan explanation for the association. In

this example the eye-color categories could be reordered by inspection. A general nieigrodly,

19941 is to sortthe categories by their scores on the largest dimensionin a (correspondence analysis)
singular value decomposition of residuals.

3.1.2 n-way tables

Another design goal is that graphical methods extend naturally to three-way and higher-way tables, in
much the same way that graphical methods for quantitative data do. lkewaw table, with variables
A, B, C, ... the construction of the mosaic generalizes recursively to
{AB}
o,
Digkt. =i X 2y S Dr|iy S 2e)isk W (2)
N —
[ABCY

The braces in Eqn2j are meantto suggestthat the first two terms provide a mosaic for the marginal
frequencies of variableg and B, the first three terms give a mosaic for he 52} marginal table,
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and so forth, up to the display of the fultway table.

For example,imagine that each cell of the two-way table for hair and eye coloris further classified
by one or more additional variables—sex and ethnicity, for example. Then each rectangle can be
subdivided horizontally to show the proportion of males and females in that cell, and each of those
horizontal portions can be subdivided vertically to show the proportions of people of each ethnicity in
the hair-eye-sex group.

Figure6 showsthe mosaic forthe three-waytable, with hair andeye color groups dividedaccording
to the proportions of Males and Females: We see that there is no systematic association between sex
and the combinations of hair and eye color—except among blue-eyed blonds, where there are an
overabundance of females. (Do they have more fun?)
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Figure 6: Three-way mosaic display for hair color, eye color, and sex. The categories of sex are
crossed with those of hair color, but only the first occurrence is labeled. Residuals from the model
of joint independencg X E][ 5] are shown by shading. The only lack of fit is an overabundance of
females among blue-eyed blonds.

3.2 Fitting models

When three or more variables are represented in the mosaic, we can fit different models of “indepen-
dence” and display the residuals from each. We treat these as null or baseline models, which may not
fit the data particularly well. The deviations of observed frequencies from expected ones, displayed by
shading, will often suggestterms to be added to to an explanatory model that achieves a better fit.

For a three-way table, with variablgs & and, some of the possible models are described below
and summarized in Tabl& | use[ ] notation to list the high-order terms in a hierarchical log-linear
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Table 2: Fitted margins, model symbols and interpretations for $o/petheses for a three-way table

Fitted Model Independence Associatipn
Hypothesis margins symbol Interpretation graph

H N4 9474 N4 4k [A][B][C] AL1LB5LC @

Ha LA 4 Y [AB][C] A5 L
O,

Hs itk A4k [AC][BC] A1LE|C e e
O,

He  nippnigesnie  [ABJACIBC] - (A)-(B)

model; these correspond to the margins of the table which are fitted exactly. Any other associations
presentin the data will appear in the pattern of residuals. Herg, E is read, ‘4 is independent

of B”. Table 2 also depicts the relations among variables as an association graph, where associated
variables are connected by and edge.

Hi: Mutual independence The model of mutual independence, L F 1 ', asserts that all joint
probabilitiesr,;; are products of the one-way marginal proii®s: m;;z = 44 T4;4 T4 4.
This corresponds to the log-linear mofl¢][ B][Z]. Fitting this model leaves all higher terms,
and hencall associationamongthe variables, in the residuals.

H3: Joint independence The model in which variable' is jointly independent of variable$ and
B, (4, F L C), hasmi;z = mi;4 T44k., and corresponds to the log-linear moeE][£].
Residuals from this model showthe extentto which variabis related to the combinations of
variablesd andF, butthey do not showanyassociation betwgeands, since that association
is fitted exactly.

H,: Conditional independence Two variables, sayl and&, are conditionally independentgiventhe
third () if 4 andF are independent when we control #8r symbolizedast L F|C. This
means that conditional probabilities;;;, obeyr ;i = ;4 74 ;.- The corresponding log-
linear models is denotdd ][ EZ]. When this model s fit, the mosaic shows the conditional
associations between variablésand 5, controlling forZ, but does not show the associations
betweend and, or B andZ.

Ha: No three-way interaction For this model, no pair is marginally or conditionally independent,
so there is no independence interpretation. However, the partial association between any two
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variables is the same at each level of the third variable. The corresponding log-linear model
formulais[AB][AZ][EC], indicating that all two-way margins are fit exactly and so are not
shown in the residuals. Only a possible three-way association appears in the mosaic.

For example, with the data from Taklldoroken down by sex, fitting the joint-independence model
[HairEye][Sex]allows us to see the extentto which the joint distribution of hair-color and eye-color is
associated with sex. For this model, the likelihood-réattds 19.86 on 15if (p = .178), indicating an
acceptable overall fit. The three-way mosaic for this modelwas shown in Fégdrey other modelfit
to this table will have the same tiles in the mosaic since the areas depend onthe observed frequencies;
the residuals, and hence the shading of the tiles will differ.

3.2.1 Sequential plots and models

The mosaic display is constructed in stages, with the variables listed in a given order. At each stage,
the procedure fits a (sub)model to the marginal subtable defined by summing over all variables not
yet entered. For example for a three-way taljle 5}, the marginal subtablesi} and{ A5} are
calculated in the process of constructing the three-way mosaic{ Alhenarginal table can be fit to
amodel where the categories of variable A are equiprobable (or some other discrete distribution); the
independence model can be fit to th& 5] subtable, and so forth. The series of plots can give greater
insightinto the relationships among all the variables than a single plot alone.

Moreover, the series of mosaic plots fitting submodels of joint independence to the marginal sub-
tables have the special property that they can be viewed as partitionihgpbthesis of mutual inde-
pendence in the full tabld=(iendly, 1994h Goodman1970.

For example, for the hair-eye data, the mosaic displays f¢Hhg] [ Eye] marginaltable (Figurb)
and thgHairEyd [ SeX (Figure6) table can be viewed as representing the partition

Model df G2

[Hair] [Ey€] 9 146.44
[Hair, Eygd[SeY 15 19.86
[Hair][Eye][Seq 24 155.20

This partitioning scheme for sequential models of joint independence extends directly to higher-
way tables. Th&MOSAICS program Eriendly, 1992h° implements a variety of schemes for fitting a
sequential series of submodels, including mutual independence, joint independence, conditional inde-
pendence, partial independence and markov chain models, as shown iB.Table

3.3 Example: Survival on theTitanic

There have been few marine disasters resulting in the staggering loss of life which occurred in the
sinking of theTitanic on April 15, 1912 and (perhaps as a result) few that are so widely known by the
public. Itis surprising, therefore, that neitherthe exact death toll from this disaster nor the distributions
of death among the passengers and crew are universally agreedon(1995 Table 2) presents the
cross-classification of 2201 passengers and crew ofitieic by Age, Gender, Class (1st, 2nd, 3rd,
Crew) shown in Tablé and describes his efforts to reconcile various historical sources. Let us see
whatwe can learn from this data set.

3http:/Avww.math.yorku.ca/SCS/mosaics. html
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Table 3: Log-linear models corresponding to the varfittygpoe  valuesrecognized bJOSAICS.

fitype 2| 3-wayP 4-way 5-way
MUTUAL | [4][B][C] [A][B][CI[DP]  [A][B][C][D][£]
JOINT [4B][c] [4BC][D] [ABCE][E]
JOINT1L [4][BC]  [4][BCD] [4][BCDE]
CONDIT [AC][BC] [AD][BD][CD] [AE][BE][CE][DE]
CONDITL |[AB][AC] [AB][AC][4D] [AB][AC][AD][AE]
PARTIAL | [4C][BC] [ACD][FcD] [ADE][BDE]|[CDE]
MARKOV1 |[4B][B¢] [4B][BC][cD] [AB][BC][CD][DE]
MARKOV?2 |[4][B][C] [4ABC][BCD] [ABC]|[BCD][CDE]

n all cases, the modgh][E]is fit to a two-way table or marginal table.
bThe lettersd, B, 2, .. . referto the table variablesin the order of entry into the mosaic display.

Examining the series of mosaics for the variables ordered Class, Gender, Age, Survival will show
the relationships among the background variables and how these are related to survival. The letters
o, =, A, 5 respectively are usedto refer to these variables below.

Figure 7 and Figure8 show the two-way and three-way plots among the background variables.
Figure7 shows that the proportion of males decreases with increasing economic class, and that the
crew was almost entirely male. The three-way plot (Figg8)reshows the distribution of adults and
children among the Class-Gender groups. The residuals display the fit of a model in which Age is
jointly independent of the the Class-Gender categories. Note that there were no children among the
crew, and the overall proportion of children was quite small (about 5 %). Among the passengers, the
proportion of children is smallest in first class, largestin third class. The only large positive residuals
correspond to a greater number of children among the 3rd class passengers, perhaps representing
families travelling or immigrating together.

The four-way mosaic, shown in Figuge fits the mode]C & A] 5] which asserts that survival is
independent of Class, Gender and Age. This is the minimal null model when the first three variables
are explanatory. It is clear that greater proportions of women survived than men in all classes, but
with greater proportions of women surviving in the upper two classes. Among males the proportion
who survived also increases with economic class. However, this model fits very pGéflys( =
671.96), and we may try to fit a more adequade model by adding associations between survival and
the explanatory variables.

Adding a main effect of each of Class, Gender and Age on Survival amouniisng fihne model
[CGACS[G5]AS]. Thatis, each of the three variables is associated with survival, but have inde-
pendent, additive effects. The mosaic for this model, shown in Fig@ir€he fit of this model is much
improved (.G *(5] = 555.4), but still does not represent an adequated#t((Li] = 112.56). There
are obviously interactions among Class, Gender and Age on their impact on survival, some of which
we have already noted.

Noting the rubric of “women and children first”, we nextfit the mojdez A C 5] & A5] in which
Age and Genderinteractin their influenceon survival. The mosaic for this modelis shown in Flgure
Adding the association of Age and Genderwith survival has improved the model slightly, howeverthe
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Table 4: Survival on the Titanic

Class
Survived Age Gender| 1st 2nd 3rd Crew
No Adult Male 118 154 387 67(
Yes 4 13 89 3
No Child 0 0 35 0
Yes 0 0 17 0
No Adult Female 57 14 75 192
Yes 140 80 76 20
No Child 5 11 13 0
Yes 1 13 14 0

fit is still not good (%(9) = 94.54). If we add the interaction of Class and Gender to this (the model
[CGACGS[GFAS]) the The likelihood-ratio chi-square is reduced substantiglf{ ) = 37.26),
butthe lack of fit is still significant.

Finally, we try a model in which Class interacts with both Age and Gender to give the model
[CGACGS]C AS], whose residuals are shown in Figur2 The likelihood-ratio chi-square is now
1.69 with 4 df, a very goodfit, indeed.

The import of these figures is clear. Regardless of Age and Gender, lower economic status was
associated with increased mortality; the differences due to Class were moderated, however, by both
Age and Gender. Although women on thiganic were more likely overall to survive than men, the
interaction of Class and Gender shows that women in 3rd class did not have a significant advantage,
while men in 1st class did compared to men in other classes. The interaction of Class and Age is
explained by the observation that while no children in 1st or 2nd class died, nearly two-thirds in 3rd
class died; for adults, mortality increases progressively as economic class declines. Heaaghalt
the phrase “women and children first” is melifluous and appeals to our sense of Edwardian chivalry a
more adequate description might be “women and children (according to class), then 1stclass men”.

4 Mosaic matrices for categorical data

One reason for the wide usefulness of graphs of quantitative data has been the development of effec-
tive, general techniques for dealing with high-dimensional datasets. The scatterplot matrix shows all
pairwise (marginal) views of a set of variables in a coherent display, whose design goal is to showthe
interdependence among the collection of variables as a whole, and which allows detection of patterns
which could not readily be discerned from a series of separate graphs. In effect, a multivariate data set
in p dimensions (variables) is shown as a collectiop(@f— 1] two-dimensional scatterplots, each of
which is the projection of the cloud of points on two of the variable axes. These ideas can be readily
extendedto categorical data.

A multiway contingency table ofi categorical variablesy, B, , ..., also contains the interde-
pendence among the collection of variables as a whole. The saturated log-lineafa&del.. .] fits
this interdependence perfectly, but is often too complex to describe or understand. By summing the
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Figure 7: Titanic data: Class and Gender Figure 8: Titanic data: Class, Gender, Age

table over all variables excepttwd,andE, say, we obtain a two-variable (marginal) table, showing

the bivariate relationship betweenand &, which is also a projection of the-variable relation into

the space of two (categorical) variables. If we do this fopatl — 1) unordered pairs of categorical
variables and display each two-variable table as a mosaic, we have a categorical analog of the scatter-
plot matrix, called anosaic matrix Like the scatterplot matrix, the mosaic matrix can accommodate
any number of variablesin principle, butin practiceis limited by the resolution of our displayto three

or four variables.

4.1 MCA and the Burt matrix

The mosaic matrix has another interpretation as a direct visualization of the so-called “Burt matrix”
which forms the basis of multiple correspondence analysis (MCAp-vlay, J; x Ja ¥ -+- % Jp
contingencytable off = [] J; cells can be represented in a vector of frequeneies(ny, ..., nK]T
andaX x p matrix X whose*" column givesthe factorlevels for variallin each cell of the table.
Let Z; be theX  .J; indicator (design) matrix corresponding#e, so thatZ;(k,£) = 1 e i = 4,
andletZ be theX x T°F J; partitioned matriXz, | Z;| ... | Z;).

Then the Burt matrix is the symmetric partitioned matrix

N D
B = Z'diag(n)Z = | M2y Mz

where each diagonal block;;, is a diagonal matrix of the one-way marginal frequencies of variable

i and each ff-diagonal blockN; ;1 = Zrdiag(njzf- is the two-way marginal contingency table for
variables andy, with its transpose idv;;;;. MCA (see, e.g.Greenacrg1984) can be defined as an
ordinary correspondence analysis (a singular value decotigp)of the matrix B which produces
scores for the categories of all variables so that the greatest proportion of the pairwise associations in
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Figure 9: Class, Gender, Age, and Survival, JoinFigure 10: Main effects of Age, Gender and
independence Class on Survival

all off-diagonal blocks isccounted for in a small number of dimensions. The mosaic matrix of these
two-way margins thus provides a visual representation of the Burt nfasind the total amount of
shading in all the individual mosaics portraysthe total pairwise associations decomposed by MCA.

4.2 Example: Survival on theTitanic

Figure13shows the mosaic matrix for the bivariate relations inThenic data. The bottom row and
the rightmost column show the associations between each of the background variables and Survival
collapsing overother variables. There are strong associations of all three variables, but particularly for
Gender (females more likely to have survived overall) and for Class (“1st” mostlikely to have survived
overall). Off-diagonal panels show the associations among the classifications of the passengers and
crew. The panelin row 3, columr?is the bivariate relation between Class and Gender, shown earlier
in Figure7. The panelsin row 2 show that very few children sailed onfitemic, and that most were
in 3rd class, and female.

The mosaic matrix in Figur&3 may be compared with the the results of an MCA analysis of the
Titanic data. Figurel4 shows the 2-dimensional solution. The positions of the category points for
all factors accounts for 50% of the total associatigf§1] = 15533.4), representing all pairwise
interactions among the four factors. The points for each factor have the property that the sum of
coordinates on each dimension, weighted inversely by the marginal proportions, equals zero, so that
high frequency categories (e.g., Adult) are close to the origin. The first dimension is perfectly aligned
with the Gender factor, and also strongly aligned with Survival. The second dimension pertains mainly
to Class and Age effects. Considering those points which differ from the origin most similarly (in
distance and direction) to the point for Survived, gives the interpretation that survival was associated

4The representation would be complete if the one-way margins where drawn in the diagonal cells.
®Rows and columns in the mosaic matrix are identified as in a table or numerical matrix, with row 1, column 1 in the
upper left corner.
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Figure 11: Main effects + Age*Gender on Sur- Figure 12: Main effects + Age*Gender +
vival Class*Gender on Survival

with being female or upper class or (to a lesser degree) being a child.

The mosaic matrix, although more complex, captures all of the pairwise associations, while the
MCA plot shows only 50% in two dimensions. (A third dimension would account for aitiaddl
17% here.) Most importantly, the pairwise associations are shown explicitly in the mosaic matrix,
while they must be inferred from the positions of category points in the MCA plot.

4.3 Example: Berkeley admissions

Figurel5 shows the pairwise marginal relations among the variables Admit, Gender and Department
in the Berkeley data which were examined earlier in fourfold displays (Fifjued Figure?). The
panelin row 2, column 1 shows that Admission and Gender are strongly associated marginally, as we
saw in Figurel, and overall, males are more often admitted. The diagonally-opposite panel (row 1,
column 2) shows the same relation, splitting first by gerider.

The panelsin the third column (and third row) illuminate the explanation for the paradoxical result
(see Figure?) that, within all but department A, the likelihood of admission is equal for men and
women, yet, overall, there appears to be a bias in favor of admitting men (see Eigure (1,3) and
(3, 1) panels shows the marginal relation between Admission and Department; departments A and B
have the greatest overall admission rate, departments E and F the least. The (2, 3) panel shows that
men apply in much greater numbers to departments A and B, while women apply in greater numbers
to the departments with the lowest overall rate of admission.

®Note that this is different than just the transpose or interchange of horizontal and vertical dimensions as in the scatterplot
matrix, because the mosaic displayitspthe total frequency first by the horizontal variable and themdiitionally) by the
vertical variable. The areas of all correspondiiigs are the same ipach digonally opposite pair, however, as are the
residuals shown by color and shading.
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Figure 13: Mosaic matrix ofitanic data. Each panel shows the marginal relation, fitting an indepen-
dence model between the row and column variable, collapsed over other variable(s).

4.4 Conditional plot matrices

Several further extensions are now possible. First, we need not show the marginal relation between
each pair of variables in the mosaic matrix. For example, Figérehows the pairwiseonditional
relations among these variables. All panels show the same observed frequencies by the areas of the
tiles, buteach fits a model of coritibnal independence between the row and column variable, with
the remaining variable controlled. Thus, the shading in the (1,2) and (2,1) panels show the fit of the
model [Admit,Dept] [Gender, Dept], which asserts that Admission and Genderare independent, given
(controlling for) department. Except for Department A, this model fits quite well, again indicating
lack of gender bias. The (1,3) and (3,1) panels show the relation between admission and department
controlling for gender, highlighting the differential admission rates across departments.

Second, the analogous cdtimhal matrix plot for quantitative variables is of some interest itself.
For each pair of variablesy;, X ;, we plotX¥; = X; — X;|others againsk’; = X; — X;|others,
where “others” is the complementary set excludiigX ;. Whittaker(199Q shows that¥;, X ; are
conditionally independent of the otheiffsthe corresponding element of the inverse covariance matrix
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Figure 14: Titanic data: MCA analysis

n-! = {¢'71 is zero,

#ijlothers= ! & ai=1 3)
— X; L X;| others

Zero partial correlation plays the same role in graphical models for quantitative variables as two-
way terms in graphical log-linear models. Hence, the conditional scatterplot matrix for quantitative
variables provide a visualization of the pairwise partial correlations among all variables and of the
conditional independence relations studied in Gaussian graphical models. Moreover, when one vari-
able Y, is aresponse, the panels in the row¥oare just the partial regression (added variable) plots.
The other rows treat each variable in turn as a response, givindtavenugeneralization of partial
regression plots.

For example, Figur&7shows a conditional scatterplot matrix ofthe well-known Iris dAtaderson
1939, wherein each panel depicts the partial correlation between row and column variable given the
remainingtwo variables. In the analogous scatterplot matrix of marginalrelations (too familiar to most
readers to show here) all pairs of variables are positively correlated and the three iris species are widely
separated. The conditional plot tells a differentand simpler story, however. When other variables are
controlled, pairs consisting of the same flower component (petal vs. sepal) or the same measurement
(length vs. width) are positively correlated, while cross component-measure pairs (e.g., petal width,
sepal length) are negatively correlated.

Hence, for the Iris data, no pair of variables is conditionally independent. Figdsbows a form
of the independence graph (with line thickness proportional to the magnitude of partial correlation
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Figure 15: Mosaic matrix of Berkeley admissions. Each panel shows the marginal relation, fitting an
independence model.

and line style indicating direction), summarizing the partial correlations shown explicitly in Figure

In the marginal plots, the large differences among species means imply that the 0-order correlations
are poor summaries of the bivariate relations. The conditional plots in Figuiedicate that the
species effects have been removed by partialling other variables, so that the partial correlations are not
confounded by speciesdifferences.

Third, the framework of the scatterplot matrix can now be used as a general method for display-
ing marginal or conditional relations among a mixture of quantitative and categorical variables. For
marginal plots, pairs of quantitative variables are shown as a scatterplot, while pairs of categorical vari-
ables are shown as a mosaic display. Pairs consisting of one quantitative and one categorical variable
can be shown as a set of boxplots for each level of the categorical variable. Fitiaxoaigblots, we
canfit a pair of generalized linear models, predicting the row and column variables from the others,

AT
glmi) = Totherd
al1) = Totherd
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Figure 16: Conditional mosaic matrix of Berkeley admissions. Each panel shows the conditional
relation, fitting a model of conditional independence model between the row and column variable,
controlling for other variable(s)

with an identity link for quantitative variables, and log link for discrete variables. The migadie
tional plotthen shows the residuals as in the marginal views.

4.5 Coplots for categorical data

Conditional relations among variables may also be visualized by stratifying the data on the given
variables, rather than by partialling out. For quantitative vaariables, a visually effective device is the
coplotdisplay Cleveland1993.

One analog of the coplot for categorical data is an array of plots of the dependence among two or
more variables, stratified by the values of one or ngivenvariables. Each such panel then shows
the partial associations among the foreground variables; the collection of such plots show how these
change as the given variables vary. Figiis one example of this idea, using the fourfold display to
represent the associationin: 2 tables.

For categorical data, models of independence fit to the strata separately have the useful property
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Figure 17: Conditional scatterplot matrix for Iris data

thatthey decompose amodel of conditionalindependencefit to the whole table. Consider, for example,
the model of conditional independence, L E| < for a three-way table. This model asserts that

andE are independent withieachlevel of . Denote the hypothesisthatandF are independent at
levelZ{k) by 4 L E|C[{k). Then onecan shovAGderson199) that

K
Ghisje = 2. Gais e (4)
¥

That is, the overaltz* for the conditional independence model wijth— 1}{J — 1]& degrees of
freedom is the sum of the values for the ordinary association betwesstd 5 over the levels ofZ
(eachwith{I — 1]{J — 1) degrees of freedom). Thus, (a) the ovetallmay be decomposed into
portions attributable to th& & associationin the layers df, and (b) the collection of mosaic displays
for the dependence of and & for each of the levels of’ provides a natural visualization of this
decomposition.

These conditional mosaics have the additional useful property that they adjust automatically for
differing marginal frequencies across the strata, because the area of each partial mosaic is the same.
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Figure 18: Independence graph for Iris Data

This facilitates controlled comparison, allowing us to focus attention on the association of the fore-
ground variables.

Figure19and Figure20show two further examples, using the mosaic display to show the partial
relations [Admit][Dept] given Gender, and[Admit][Gender] given Dept, respectively. Figisows
the sameresults displayed in Figxeno association between Admission and Gender, exceptin Dept.
A, where females are relatively more likely to gain admission. But one can also see howthe proportion
admitted decreases regularly from Dept. A to F and how the proportion of females changes across
departments. The breakdown of the ovetilfrom Eqn. ¢) is givenin Tables.

Gender: Male Gender: Female
— T
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Figure 19: Mosaic coplotof Berkeley admissions, given Gender. Each panelshowsthe partial relation,
fitting a model of independence model between Admission and Department.

Figure 19 shows that there is a very strong association between Admission and Department—
different rates of admission, but also shows two things not seen in other displays: Fipsftéraof
association is qualitatively similar for both men and women; second the association is quantitatively
stronger for men than women—Ilarger differencesin admission rates across departments.
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Table 5: Partial tests of independence of Gender and Admission, by Department

Dept | df G4 op
A 1 19.054 0.000
B 1 0.259 0.611
C 1 0.751 0.386
D 1 0.298 0.585
E 1 0.990 0.320
F 1 0.384 0.536
Total | 6 21.735 0.001
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Figure 20: Mosaic coplot of Berkeley admissions, given Department Each panel shows the partial
relation, fitting a model of independence model between Admission and Gender.

4.6 Summary

Takentogether, mosaic matrices and mosaic coplots extend the use of the mosaic display in simple, but
powerful ways, and provide useful techniques for the graphical display of categorical and quantitative
data within a common framework.
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