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Abstract

Graphical methods for quantitative data are well-developed, and widely used in both data anal-
ysis (e.g., detecting outliers, verifying model assumptions) and data presentation. Graphical meth-
ods for categorical data, however, are only now being developed, and are not widely used.

This paper outlines a general framework for data visualization methods in terms of communi-
cation goal (analysis vs. presentation), display goal, and the psychological and graphical design
principles which graphical methods for different purposes should adhere to.

These ideas are illustrated with a variety of graphical methods for categorical data, some old
and some relatively new, with particular emphasis on methods designed for large, multi-way con-
tingency tables. Some methods (sieve diagrams, mosaic displays) are well-suited for detecting and
patterns of association in the process of model building; others are useful in model diagnosis, or
as graphical summaries for presentation of results.
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1 Introduction

For some time I have wondered why graphical methods for categorical data are so poorly developed
and little used compared with methods for quantitative data. For quantitative data, graphical methods
are commonplace adjuncts to all aspects of statistical analysis, from the basic display of data in a
scatterplot, to diagnostic methods for assessing assumptions and finding transformations, to the final
presentation of results. In contrast, graphical methods for categorical data are still in infancy. There are
not many methods, and those that are available in the literature are not accessible in common statistical
software; consequently they are not widely used.

What has made this contrast puzzling is the fact that the statistical methods for categorical data, are
in many respects, discrete analogs of corresponding methods for quantitative data: log-linear models
and logistic regression, for example, are such close parallels of analysis of variance and regression
models that they can all be seen as special cases of generalized linear models.

Several possible explanations for this apparent puzzle may be suggested. First, it may just be that
those who have worked with and developed methods for categorical data are just more comfortable
with tabular data, or that frequency tables, representing sums over all cases in a dataset are more easily
apprehended in tables than quantitative data. Second, it may be argued that graphical methods for
quantitative data are easily generalized; for example, the scatterplot for two variables provides the
basis for visualizing any number of variables in a scatterplot matrix; available graphical methods for
categorical data tend to be more specialized.

However, a more fundamental reason may be that quantitative and categorical data display are best
served by different visual metaphors. Quantitative data rely on the natural visual representation of
magnitude by length or position along a scale; for categorical data, it will be seen that a count is more
naturally displayed by an area or by the visual density of an area.

To make the contrast clear, Section3 describes and illustrates several graphical methods for cat-
egorical data, some old and some relatively novel, with particular emphasis on methods designed for
large, multi-way contingency tables. Some methods (sieve diagrams, mosaic displays) are well-suited
for detecting and patterns of association in the process of model building; others are useful in model
diagnosis, or as graphical summaries for presentation of results. A more substantive illustration fol-
lows in Section4. A final section describes some ideas for effective visual presentation. But first I will
outline a general framework for data visualization methods in terms of communication goal (analysis
vs. presentation), display goal, and the psychological and graphical design principles which graphical
methods for different purposes should adhere to.

2 Goals and Design Principles for Visual Data Display

Designing good graphics is surely an art, but equally surely, it is one that ought to be informed by
science. In constructing a graph, quantitative and qualitative information is encoded by visual features,
such as position, size, texture, symbols and color. This translation is reversed when a person studies
a graph. The representation of numerical magnitude and categorical grouping, and the aperception of
patterns and theirmeaningmust be extracted from the visual display.

There are many views of graphs, of graphical perception, and of the roles of data visualization
in discovering and communicating information. On the one hand, one may regard a graphical dis-
play as a ’stimulus’ – a package of information to be conveyed to an idealized observer. From this
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perspective certain questions are of interest: which form or graphic aspect promotes greater accuracy
or speed of judgment (for a particular task or question)? What aspects lead to greatest memorabil-
ity or impact? ClevelandCleveland and McGill(1984, 1985), Cleveland(1993a), Lewandowsky and
SpenceLewandowsky and Spence(1989), Spence(1990) have made important contributions to our
understanding of these aspects of graphical display.

An alternative view regards a graphical display as an act of communication—like a narrative, or
even a poetic text or work of art. This perspective places the greatest emphasis on the desired com-
munication goal, and judges the effectiveness of a graphical display in how well that goal is achieved.
Kosslyn(1985, 1989) has articulated this perspective most clearly from a cognitive perspective.

In this view, an effective graphical display, like good writing, requires an understanding of its
purpose—what aspects of the data are to be communicated to the viewer. In writing we communicate
most effectively when we know our audience and tailor the message appropriately. So too, we may
construct a graph in different ways to use ourselves, to present at a conference or meeting of our
colleagues, or to publish in a research report, or a communication to a general audience (Friendly,
1991, Ch. 1).

Figure1 shows one organization of visualization methods in terms of the primary use or intended
communication goal, the functional presentation goal, and suggested corresponding design principles.

The first distinction identifiesAnalysisor Presentationas the primary communication goal of a
data graphic (with the understanding that a given graph may serve both purposes—or neither). Among
graphical methods designed to help study or understand a body of data, I distinguish those designed
for:

� reconnaissance—a preliminary examination, or an overview of a possibly complex terrain;

� exploration—graphs designed to help detect patterns or unusual circumstances, or to suggest
hypotheses, analyses or models;

� diagnosis—graphs designed to summarize or critique a numerical statistical summary.

Presentation graphics have different presentation goals as well. We may wish to stimulate, or to
persuade, or simply to inform. As in writing, it is usually a good idea to know what it is you want to
say with a graph, and tailor its message to that goal. (In what follows, my presentation goal is primarily
didactic.)

3 Some Graphical Methods for Categorical Data

One-way frequency tables may be conveniently displayed in a variety of ways: typically as bar charts
(though the bars should often be ordered by frequency, rather than by bar-label), dot chartsCleveland
(1993b) or pie charts (when percent of total is important).

For two- (and higher-) way tables, however, the design principles of perception, detection, and
comparison imply that we should try to show the observed frequencies in the cells in relation to what
we would expect those frequencies to be under a reasonable null model — for example, the hypothesis
that the row and column variables are unassociated.
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Figure 1: Basic functions of data display.
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Table 1: Hair-color eye-color data.

Hair Color
Eye
Color BLACK BROWN RED BLOND Total

Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220

Total 108 286 71 127 592

To this end, several schemes for representing contingency tables graphically are based on the fact
that when the row and column variables are independent, the estimated expected frequencies,mij , are
products of the row and column totals (divided by the grand total):mij = ni+n+j=n++. Then, each
cell can be represented by a rectangle whose area shows the cell frequency,nij, or the deviation from
independence.

3.1 Sieve diagrams

Table1 shows data on the relation between hair color and eye color among 592 subjects (students in a
statistics course) collected bySnee(1974). The Pearson�2 for these data is 138.3 with nine degrees
of freedom, indicating substantial departure from independence. Assume the goal is to understand the
natureof the association between hair and eye color.

For any two-way table, the expected frequencies under independence can be represented by rect-
angles whose widths are proportional to the total frequency in each column,n+j, and whose heights
are proportional to the total frequency in each row,ni+; the area of each rectangle is then proportional
tomij . Figure2 shows the expected frequencies for the hair and eye color data. Each rectangle is ruled
proportionally to the expected frequency, and we note that the visual densities are equal in all cells.

Riedwyl and Sch¨upbach(1983, 1994) proposed asieve diagram(later called aparquet diagram)
based on this principle. In this display the area of each rectangle is proportional to expected frequency,
as in Figure2, but observed frequency is shown by the number of squares in each rectangle. Hence,
the difference between observed and expected frequency appears as the density of shading, using color
to indicate whether the deviation from independence is positive or negative. (In monochrome versions,
positive residuals are shown by solid lines, negative by broken lines.) The sieve diagram for hair color
and eye color is shown in Figure3.

3.2 Mosaic displays for n-way tables

The mosaic display, proposed byHartigan and Kleiner(1981, 1984), and extended byFriendly(1992,
1994b) represents the counts in a contingency table directly by tiles whose area is proportional to the
observedcell frequency. One important design goal is that this display should apply extend naturally
to three-way and higher-way tables. Another design feature is to serve both exploratory goals (by
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Figure 2: Expected frequencies under independence. Each box has area equal to its expected fre-
quency, and is cross-ruled proportionally to the expected frequency.
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Figure 3: Sieve diagram for hair-color, eye-color data. Observed frequencies are equal to the number
squares in each cell, so departure from independence appears as variations in shading density.
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Figure 4: Condensed mosaic for Hair-color, Eye-color data. Each column is divided according to
the conditional frequency of eye color given hair color. The area of each rectangle is proportional to
observed frequency in that cell.

showing the pattern of observed frequencies in the full table), and model building goals (by displaying
the residuals from a given log-linear model).

One form of this plot, called thecondensed mosaic display, is similar to a divided bar chart. The
width of each column of tiles in Figure4 is proportional to the marginal frequency of hair colors; the
height of each tile is determined by the conditional probabilities of eye color in each column. Again,
the area of each box is proportional to the cell frequency, and independence is shown when the tiles in
each row all have the same height.

3.2.1 Enhanced mosaics

The enhanced mosaic displayFriendly (1992, 1994b) achieves greater visual impact by using color
and shading to reflect the size of the residual from independence and by reordering rows and columns
to make the pattern of association more coherent. The resulting display shows both the observed
frequencies and the pattern of deviations from a specified model.

Figure 5 gives the extended the mosaic plot, showing the standardized (Pearson) residual from
independence,dij = (nij�mij)=

p
mij by the color and shading of each rectangle: cells with positive

residuals are outlined with solid lines and filled with slanted lines; negative residuals are outlined with
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Figure 5: Condensed mosaic, reordered and shaded. Deviations from independence are shown by color
and shading. The two levels of shading density correspond to standardized deviations greater than 2
and 4 in absolute value. This form of the display generalizes readily to multi-way tables.

broken lines and filled with grayscale. The absolute value of the residual is portrayed by shading
density: cells with absolute values less than 2 are empty; cells withjdij j � 2 are filled; those with
jdij j � 4 are filled with a darker pattern.1 Under the assumption of independence, these values roughly
correspond to two-tailed probabilitiesp < :05 andp < :0001 that a given value ofjdij j exceeds 2 or
4. For exploratory purposes, we do not usually make adjustments (e.g., Bonferroni) for multiple tests
because the goal is to display the pattern of residuals in the table as a whole. However, the number and
values of these cutoffs can be easily set by the user.

When the row or column variables are unordered, we are also free to rearrange the correspond-
ing categories in the plot to help show the nature of association. For example, in Figure5, the eye
color categories have been permuted so that the residuals from independence have an opposite-corner
pattern, with positive values running from bottom-left to top-right corners, negative values along the
opposite diagonal. Coupled with size and shading of the tiles, the excess in the black-brown and blond-
blue cells, together with the underrepresentation of brown-haired blonds and people with black hair
and blue eyes is now quite apparent. Though the table was reordered based on thedij values, both
dimensions in Figure5 are ordered from dark to light, suggesting an explanation for the association.
(In this example the eye-color categories could be reordered by inspection. A general methodFriendly

1Color versions use blue and red at varying lightness to portray both sign and magnitude of residuals.
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(1994b) uses category scores on the largest correspondence analysis dimension.)

3.2.2 Multi-way tables

Like the scatterplot matrix for quantitative data, the mosaic plot generalizes readily to the display
of multi-dimensional contingency tables. Imagine that each cell of the two-way table for hair and eye
color is further classified by one or more additional variables—sex and level of education, for example.
Then each rectangle in Figure5 can be divided vertically to show the proportion of males and females
in that cell, and each of those portions can be subdivided again to show the proportions of people at
each educational level in the hair-eye-sex group.

3.2.3 Fitting models

When three or more variables are represented in the mosaic, we can fit several different models of
independence and display the residuals from that model. We treat these models as null or baseline
models, which may not fit the data particularly well. The deviations of observed frequencies from
expected, displayed by shading, will often suggest terms to be added to an explanatory model that
achieves a better fit. Two examples are:

� Complete independence: The model of complete independence asserts that all joint probabilities
are products of the one-way marginal probabilities:

�ijk = �i++ �+j+ �++k (1)

for all i; j; k in a three-way table. This corresponds to the log-linear model[A] [B] [C]. Fitting
this model puts all higher terms, and hence all association among the variables, into the residuals,
displayed in the mosaic.

� Joint independence: Another possibility is to fit the model in which variableC is jointly inde-
pendent of variablesA andB,

�ijk = �ij+ �++k: (2)

This corresponds to the log-linear model[AB] [C]. Residuals from this model show the extent
to which variableC is related to the combinations of variablesA andB but they do not show
any association betweenA andB.

For example, with the data from Table1 broken down by sex, fitting the joint independence model
[HairEye][Sex] allows us to see the extent to which the joint distribution of hair-color and eye-color is
associated with sex. For this model, the likelihood-ratioG2 is 19.86 on 15df (p = :178), indicating
an acceptable overall fit. The three-way mosaic, shown in Figure6, highlights two cells: among blue-
eyed blonds, there are more females (and fewer males) than would be if hair color and eye color were
jointly independent of sex. Except for these cells hair color and eye color appear unassociated with
sex.

For higher-way tables, there are many more possible models that can be fit. However, they have
the characteristic that, for any given table (or marginal subtable), the size of tiles in the mosaic always
shows the same observed frequencies, while the shading (showing the sign and magnitude of the



3 SOME GRAPHICAL METHODS FOR CATEGORICAL DATA 10

Black Brown Red   Blond 

B
ro

w
n
 

H
a
z
e
l 
G

re
e
n
 
B

lu
e
  

E
y
e
 c

o
lo

r

M  F M  F M  F M  F 

S
ta

n
d

a
rd

iz
e

d
re

s
id

u
a

ls
: 

 
<

-4
-4

:-
2

-2
:-

0
0

:2
2

:4
>

4

Figure 6: Three-way mosaic display for hair color, eye color, and sex. Residuals from the model of
joint independence,[HE] [S] are shown by shading.G2 = 19.86 on 15 df. The only lack of fit is an
overabundance of females among blue-eyed blonds.

residuals) varies from one model to another. Because a good-fitting model will have all or mostly
small residuals, and these are shown unfilled, a search for an adequate explanatory model can be
thought of as “cleaning the mosaic”.

3.2.4 Color scales for residuals

The design of the mosaic display shares some features with the use of statistical maps to display
quantitative information, and it is appropriate (and perhaps instructive) to consider my use of color
and shading in a area-based display.

When we displaysignedmagnitudes, such as residuals from a fitted model or differences between
time points on a mosaic or a map, the goal is usually to convey both magnitude (how big a difference?)
and direction (is it more or less?). For this use, a double-ended color scale, using opposing colors such
as red and blue, with darker, more saturated colors at the extremes, is usually most effective. In the
mosaic display I use the color schemeCleveland(1993b) refers to as “two-hues, varying lightness”,
and whichCarr(1994) uses quite effectively in the display of residuals on a map.

The choice of opposing colors and assignment to positive and negative, requires care and consid-
eration of the intended audience, however. I use red for negative “deficit” values and blue for positive
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“excesses”;Carr (1994) in displays of rates of disease assigns red to positive “hot spots” and cooler
blue to negative values. Various government agencies have other conventions about the assignment of
color. Unfortunately, black and white reproduction of red/blue displays folds red and blue to approxi-
mately equal gray levels. In the mosaic displays, I usually prepare different versions—using gray level
and pattern fills for figures to be shown in black and white. Color versions of the figures shown here
are available on the WWW athttp://www.math.yorku.ca/SCS/Papers/casm/ .

3.3 Fourfold Display

A third graphical method based on area as the visual mapping of cell frequency is the “fourfold display”
(Friendly, 1994a,c, Fienberg, 1975) designed for the display of2 � 2 (or 2 � 2 � k) tables. In this
display the frequencynij in each cell of a fourfold table is shown by a quarter circle, whose radius is
proportional to

p
nij, so the area is proportional to the cell count.

For a single2 � 2 table the fourfold display described here also shows the frequencies by area,
but scaled in a way that depicts the sample odds ratio,�̂ = (n11=n12) � (n21=n22). An association
between the variables (� 6= 1) is shown by the tendency of diagonally opposite cells in one direction
to differ in size from those in the opposite direction, and the display uses color or shading to show this
direction. Confidence rings for the observed� allow a visual test of the hypothesisH0 : � = 1. They
have the property that the rings for adjacent quadrants overlapiff the observed counts are consistent
with the null hypothesis.

As an example, Figure7 shows aggregate data on applicants to graduate school at Berkeley for
the six largest departments in 1973 classified by admission and sex. At issue is whether the data
show evidence of sex bias in admission practicesBickel et al.(1975). The figure shows the observed
cell frequencies numerically in the corners of the display. Thus there were 2691 male applicants, of
whom 1193 (44.4%) were admitted, compared with 1855 female applicants of whom 557 (30.0%)
were admitted. Hence the sample odds ratio, Odds (AdmitjMale) / (AdmitjFemale) is 1.84 indicating
that males were almost twice as likely to be admitted.

The frequencies displayed graphically by shaded quadrants in Figure7 are not the raw frequen-
cies. Instead, the frequencies have been standardized (by iterative proportional fitting) so that all table
margins are equal, while preserving the odds ratio. Each quarter circle is then drawn to have an area
proportional to this standardized cell frequency. This makes it easier to see the association between
admission and sex without being influenced by the overall admission rate or the differential tendency
of males and females to apply. With this standardization the four quadrants will align when the odds
ratio is 1, regardless of the marginal frequencies.

The shaded quadrants in Figure7 do not align and the 99% confidence rings around each quadrant
do not overlap, indicating that the odds ratio differs significantly from 1—putative evidence of gender
bias. The width of the confidence rings gives a visual indication of the precision of the data—if we
stopped here, we might feel quite confident of this conclusion.

3.3.1 Multiple strata

In the case of a2�2�k table, the last dimension typically corresponds to “strata” or populations, and
it is typically of interest to see if the association between the first two variables is homogeneous across
strata. The fourfold display is designed to allow easy visual comparison of the pattern of association
between two dichotomous variables across two or more populations.
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Figure 7: Four-fold display for Berkeley admissions: Evidence for sex bias? The area of each shaded
quadrant shows the frequency, standardized to equate the margins for sex and admission. Circular arcs
show the limits of a 99% confidence interval for the odds ratio.

For example, the admissions data shown in Figure7 were obtained from a sample of six depart-
ments; Figure8 displays the data for each department. The departments are labelled so that the overall
acceptance rate is highest for Department A and decreases steadily to Department F. Again each panel
is standardized to equate the marginals for sex and admission. This standardization also equates for
the differential total applicants across departments, facilitating visual comparison.

Surprisingly, Figure8 shows that, for five of the six departments, the odds of admission is es-
sentially identical for men and women applicants. Department A appears to differs from the oth-
ers, with women approximately 2.86 (= (313=19)=(512=89)) timesmore likely to gain admission.
This appearance is confirmed by the confidence rings, which in Figure8 are joint 99% intervals for
�c; c = 1; : : : ; 6.

This result, which contradicts the display for the aggregate data in Figure7, is a nice example
of Simpson’s paradox. The resolution of this contradiction can be found in the large differences in
admission rates among departments. Men and women apply to different departments differentially,
and in these data women apply in larger numbers to departments that have a low acceptance rate. The
aggregate results are misleading because they falsely assume men and women are equally likely to
apply in each field.2

2This explanation ignores the possibility of structural bias against women, e.g., lack of resources allocated to departments
that attract women applicants.
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Figure 8: Fourfold display of Berkeley admissions, by department. In each panel the confidence rings
for adjacent quadrants overlap if the odds ratio for admission and sex does not differ significantly from
1. The data in each panel have been standardized as in Figure7.

3.3.2 Visualization principles

An important principle in the display of large, complex datasets iscontrolled comparison—we want
to make comparisons against a clear standard, with other things held constant. The fourfold display
differs from a pie chart in that it holds the angles of the segments constant and varies the radius,
whereas the pie chart varies the angles and holds the radius constant. An important consequence is
that we can quite easily compare a series of fourfold displays for different strata, since corresponding
cells of the table are always in the same position. As a result, an array of fourfold displays serve the
goals of comparison and detection better than an array of pie charts. Moreover, it allows the observed
frequencies to be standardized by equating either the row or column totals, while preserving the odds
ratio. In Figure8, for example, the proportion of men and women, and the proportion of accepted
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Table 2: National Assessment of Educational Proficiency, 1992 Mathematics. Counts of Achievement
Levels by Program, Poverty and Ethnicity.

Not Poor Poor

White Asian Black Hispanic White Asian Black Hispanic

Academic
Program

Advanced 23403 1711 0 1050 6814 542 0 633

Proficient 224723 15145 4591 5716 96442 5654 3308 7500

Basic 679319 30590 32937 26709439109 27276 64451 42726

BelowBasic 102849 3645 23983 20596135919 7974 132421 52327

Non
Academic
Program

White Asian Black Hispanic White Asian Black Hispanic

Advanced 1866 0 0 0 0 0 0 0

Proficient 24317 2518 1039 570 716 557 0 482

Basic 208710 13142 14271 16338151369 5478 9229 23551

BelowBasic 244240 7149 60868 35233254734 3315 134874 81356

applicants were equated visually in each department. This provides a clear standard which also greatly
facilitates controlled comparison.

Another principle isvisual impact—we want the important features of the display to be easily
distinguished from the less importantTukey(1993). In Figure8 distinguishes the one department for
which the odds ratio differs significantly from 1 by shading intensity, even though the same information
can be found by inspection of the confidence rings.

4 Example: NAEP 1992 Grade 12 Mathematics

The previous section used simple examples to illustrate these somewhat novel techniques themselves.
This section illustrates the use of these graphical methods in attempting to understand a large, complex
dataset of the sort often found in public policy research, and which often defies standard visualization
methods.

Table2 is a four-way classification of over 3.5 million examinees from the 1992 National Assess-
ment of Educational Proficiency (Mullis et al., 1993, Wainer, 1997), classified by their high school
program (Academic, Non Academic), their economic status (Not Poor vs. Poor), and ethnic group
(White, Asian, Hispanic, Black). Students in the background groupings are then classified by their
performance on the NAEP Mathematics test, recorded here as Advanced, Proficient, Basic or Below
Basic.

One glance at Table2 shows two things: First, very few students achieve Advanced level, none
in Non Academic Programs (save a few Not Poor white students); as a result, the analysis below
combines Advanced and Proficient, labelled “Proficient+”. Second, the usefulness of this table as a
data display is nil, except as a record of the results.

Mosaic displays are constructed sequentially, with the variables arranged in a particular order, and
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it usually makes sense to order the variables in a quasi-causal, or predictor-response fashion. Here I
consider Ethnicity and Poverty as (partial) determinants of academic Program, and all three of these
as potential predictors of achievement level.

4.1 Analysis of [Ethnicity, Poverty, Achievement Level]

For simplicity, we begin with an analysis of the marginal table of Ethnicity, Poverty and Level, collaps-
ing over Program. Figure9 shows the mosaic for (the marginal table of) Ethnicity and Poverty, fitting
the independence model. If Poverty were unrelated to Ethnic group, the tiles would all be equally wide
in each column. There is, of course, a pronounced association between Poverty and Ethnic Group
(G2(3) = 193:95), as shown by the shading pattern of the residuals: Asians and Whites are more fre-
quently NotPoor and Hispanics and Blacks are more frequently Poor, than would be the case if these
variables were independent.3

Figure10shows the relation between Achievement Level and Ethnicity and Poverty, fitting a model
[(EthPov)(Level)] which says that Level is independent of the combinations of Ethnicity and Poverty
jointly. The shading pattern shows how violently this model is contradicted by the data (G2(14) =
553; 568):

� Among NotPoor Whites, an over-abundance are in Basic level or higher; for Poor Whites, how-
ever, frequencies significantly greater than expected under this model of joint independence
occur only in the Basic level.

� Among Asians, there are greater than expected frequencies in all but the Below Basic category,
independent of Poverty.

� Among both Hispanics and Blacks, there are greater than expected frequencies in the Below
Basic level.

It is depressingly striking how few 12th grade children are classified in the Advanced or Proficient
categories.

4.2 Analysis of the Full Table

With some understanding among the relations among Poverty, Ethnicity and Achievement Level, we
proceed to fitting sequential models of joint independence to the full table. The analysis goal is not
to provide an adequate model, but simply to remove the associations we have already seen, thereby
revealing the associations which remain.4

Figure11 shows the relation between Academic Program and the combinations of Ethnicity and
Poverty; residuals show how Program is associated with the categories of the other two variables:

� NotPoor Whites are more likely to be in Academic programs, while the reverse is true for Poor
Whites.

3 Blacks and Hispanics are interchanged from the original table, in accord with association ordering, described below.
4All of these models fit very badly, partly due to the enormous sample size, but they are to be regarded only as baseline

models. When a model of joint independence, say, (Ethnicity, Poverty)(Program), is fit, the association between Ethnicity
and Poverty is fitexactly, and so does not appear in the residuals.
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Figure 9: Mosaic display of Ethnicity and Poverty. Residuals show the pattern of (marginal) associa-
tion between these two variables.

� Asians are more likely to be in Academic programs. This result holds regardless of Poverty.

� Hispanics and Blacks are more likely to be in NonAcademic programs, also independent of
Poverty.

Figure12shows the relation between NAEP Achievement Level and the combinations of Ethnicity,
Poverty, and academic Program jointly. The associations among the three background variables just
observed (Figure11) have been eliminated and the residuals now show how Achievement Level is
associated with the combinations of the other three variables. This is admittedly a complex display,
but a few moments study reveals the following:

� NotPoor Whites in Academic programs are more likely to achieve Basic level or above; NotPoor
Whites in NonAcademic programs are more likely to be classified Below Basic level.

� Approximately the same pattern obtains for Poor Whites. (More detailed analysis shows them
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Figure 10: NAEP data, Ethnicity and Poverty vs. Achievement Level. Residuals display the depen-
dence of Level on both Ethnicity and Poverty.

less likely than NotPoor Whites to achieve Advanced level.)

� Asians in Academic programs are more likely to achieve Basic level or above; Asians in Non-
Academic programs are most likely to achieve just Basic level. Both statements apply indepen-
dently of Poverty.

The patterns for Blacks and Hispanics diverge here for the first time:

� Blacks are most likely to achieve Below Basic level, independent of Program and Poverty, except
that NotPoor Blacks in Academic programs are more likely to achieve in Basic level.

� Hispanics are similar, except that NotPoor Hispanics in Academic programs are more likely to
achieve Advanced standing than the model of joint independence predicts.
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Figure 11: NAEP data, Ethnicity and Poverty vs. Academic Program. Residuals display how Aca-
demic Program depends on both Ethnicity and Poverty.

4.3 Other displays

The NAEP data is a2� 2� 4� 4 table, which we can regard as a collection of2� 2 tables, showing
the relation between Poverty and Academic Program for each of the 16 Ethnicity by Achievement
Level groups. Figure13 shows one fourfold display of these data. In each panel lower left quadrant
represents the most advantaged students, and the upper right represents the least advantaged. Thus, a
positive association between Poverty and Non Academic Program is shown by tick marks in the45�

direction, and we see that nearly all associations are positive.

In order to adjust for the great imbalance in the numbers of examinees in the different Poverty-
Ethnic group combinations, the data in Table2 were standardized to equate the column totals in that
table. These standardized frequencies are displayed directly in Figure13, scaled so that the largest
such frequency has unit radius. As a result, the distributions across the columns and rows may be
readily compared.
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Figure 12: NAEP data, Ethnicity, Poverty and Academic Program vs. Achievement.

It is immediately apparent that the greatest proportion of all students performed at the lowest
achievement levels, and that, at the very lowest level the largest proportion are in Non Academic
programs, particularly among Hispanics and Blacks. Second, those who achieve Proficient level are
much more likely Not Poor, and taking Academic programs. Finally (and sadly) the dearth of students
achieving Advanced level stands out clearly.

In closing this section, I’ll comment on more traditional statistical analyses and graphical displays
of such data. One statistical analysis would be to fit a more “meaningful” log-linear model than the
baseline models used earlier. When this is done, we find that the only (barely) tenable model (short of
the saturated model, which must fit perfectly) is the all-three-way-interaction model, symbolized as

(EthPovProg)(EthPovLev)(EthProgLev)(PovProgLev)

If Ethnicity, Poverty and Program are all regarded as predictors of achievement Level, this model says
that achievement level depends on the combinations of Ethnicity and Poverty, the combinations of
Ethnicity and academic Program, and the combinations of Poverty and Program. Unfortunately, this
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Figure 13: NAEP data, fourfold display.

analysis is not helpful in understandinghow achievement Level depends on those factors, although
tables of parameter estimates from this model could be interpreted to reveals some of the effects shown
in the mosaic displays.

Alternatively, a logistic regression might attempt to model achievement level in relation to the
predictors. As an example, consider a model for the probability that a student achieves at least Basic
level. The logistic model of equivalent complexity to the log-linear model can be expressed as

Pr (Basic or better)�Poverty+ Ethnicity+ Program+

Poverty� Ethnicity+ Poverty� Program+ Ethnicity� Program
(3)

where�means “is modelled by”. These results provide a sensible and relatively simple way to display
these data, which may serve a presentation goal better than the novel displays shown previously. The
idea is to plot the predicted probabilities or predicted log-odds from the model. Figure14 shows
these results in one possible format, plotting the log odds directly, but with a probability scale on the
right for those who are more comfortable with probabilities than logits. This figure shows most of
the relations between Achievement Level and the predictors discussed earlier, but shows none of the
relations among the predictors. The interaction terms in model (3) stem from the fact that the profiles in
Figure14 are not parallel. For students in Non Academic programs, the effect of Poverty increases as
achievement level decreases and is far greater for Hispanics than for Asians. For students in Academic
programs, the effect of Poverty is larger for both Asians and Hispanics than for Whites and Blacks.
This graph displays these more subtle aspects of the fitted logistic model, but the dominant message
is clear: An Academic program greatly increases the likelihood of at least Basic achievement; being
Poor greatly decreases it.
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Figure 14: NAEP data, Logistic regression.

5 Effect Ordering for Data Displays

One reason why graphs of quantitative data are effective is that graphing values on quantitative axes
automatically orders those values so that “less” and “more” are given visually ordered positions in
the display. However, when data values are classified by “factors”, the ordering of the levels of the
factor variables has considerable impact on graphical display. Ordered factors (such as age, level of
education, etc.) are usually (though not always) most sensibly arranged in their natural order for all
presentation goals.

Unordered factors (disease classification, geographic region) deserve more careful thought. For a
geographic classification (states, provinces) is it common to arrange the units alphabetically or (as is
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common in Canada) from east to west. When the goal of presentation is detection or comparison (as
opposed to table lookup), this is almost always a bad idea.

Instead, I suggest a general rule for arranging the levels of unordered factors in visual displays
— tables as well as graphs:sort the data by the effects to be observed. Sorting has both global and
local effects: globally, a more coherent pattern appears, making it easier to spot exceptions; locally,
effect-ordering brings similar items together, making them easier to compare. Seede Falguerolles
et al.(1997) for related ideas.

The use of this principle is illustrated by the following:

� Main-effects ordering: For quantitative data where the goal is to see “typical” values, sort the
units in boxplots, dotplots and tables by means, medians, or by row and column effects. (If the
goal is to see differences in variability, sort by standard deviation or interquartile range.)

For example, Figure15 shows a Trellis dotplot displayCleveland(1993b) of data on barley
yields in a three-factor design: Year by Site by Variety. All three factors have been ordered in
the panels by median overall yield. With this arrangement, the plot shows a startling anomaly
which is not apparent in conventional plots: for all sites and for all varieties, yields in 1931
were greater than in 1932, except at the Morris site, where this difference is reversed.Wainer
(1993) andCarr and Olsen(1996) have presented similar arguments for the effectiveness of such
orderings on detection.

� Discriminant ordering: For multivariate data, where the goal is to compare different groups in
their means on a (possibly large) number of variables, arrange thevariablesin tables or visual
displays according to the weights of those variables on the dimensions which best discriminate
among the groups (canonical discriminant dimensions).

Figure16shows the means for various characteristics of automobiles (1972 data fromChambers
et al. (1983) ), classified by region of manufacture. The variables have been scaled so that
longer rays represent “better” for all variables, and arranged around the circle according to their
positions on the largest discriminant dimension. The figure makes it immediately clear that
American cars are mainly larger and heavier, Japanese cars are better in price, mileage and
repair record, while European cars have intermediate and mixed patterns. The same idea of
ordering variables could be used in a profile plot or parallel coordinates plot.

� Correlation ordering: A related idea is that in the display of multivariate data by glyph plots,
star plots, parallel coordinate plots and so forth, the variables should be ordered according to
the largest principal component or biplotGabriel(1980, 1981) dimension(s). This arrangement
brings similar variables together, where similarity is defined in terms of patterns of correlation.

� Association ordering: For categorical data, where the goal is to understand the pattern of as-
sociation among variables, order the levels of factors according to their position on the largest
correspondence analysis dimensionFriendly(1994b).

6 Mosaic Matrices and Coplots for Categorical Data

A second reason for the wide usefulness of graphs of quantitative data has been the recognition that
combining multiple views of data into a single display allows detection of patterns which could not
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Figure 15: Three factor data, each factor ordered by median overall yield.

readily be discerned from a series of separate graphs. The scatterplot matrix shows all pairwise
(marginal) views of a set of variables in a coherent display, whose design goal is to show the inter-
dependence among the collection of variables as a whole. The conditioning plot, orcoplotCleveland
(1993b) shows a collection of (conditional) views of several variables, conditioned by the values of
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Figure 16: The star-shaped figures show the means for various characteristics of automobiles, classified
by region of manufacture. The variables have been arranged around the circle according to their
positions on the largest discriminant dimension. Error bars show the (univariate) least significant
difference.

one or more other variables. The design goal is to visualize how a relationship depends on or changes
with one or more additional factors. These ideas can be readily extended to categorical data.

One analog of the scatterplot matrix for categorical data is a matrix of mosaic displays showing
some aspect of the bivariate relation between all pairs of variables. The simplest case shows, for each
pair of variables, the marginal relation, summed over all other variables. For example, Figure17shows
the pairwise marginal relations among the variables Admit, Gender and Department in the Berkeley
data shown earlier in fourfold displays (Figure7 and Figure8). The panel in row 2, column 1 shows
that Admission and Gender are strongly associated marginally, as we saw in Figure7, and overall,
males are more often admitted. The diagonally-opposite panel (row 1, column 2) shows the same
relation, splitting first by gender.

The panels in the third column (and third row) illuminate the explanation for the paradoxical result
(Figure8) that, within all but department A, the likelihood of admission is equal for men and women.
The (1,3) panel shows the marginal relation between Admission and Department; departments A and
B have the greatest overall admission rate, departments E and F the least. The (2, 3) panel shows that
men apply in much greater numbers to departments A and B, while women apply in greater numbers
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Figure 17: Mosaic matrix of Berkeley admissions. Each panel shows the marginal relation, fitting an
independence model between the row and column variable, collapsed over other variable(s)

to the departments with the lowest overall rate of admission.

Several further extensions are now possible. First, we need not show the marginal relation between
each pair of variables in the mosaic matrix. For example, Figure18 shows the pairwiseconditional
relations among these variables, in each case fitting a model of conditional independence with the
remaining variable controlled. Thus, the (1,2) and (2,1) panels shows the fit of the model [Admit,Dept]
[Gender, Dept], which asserts that Admission and Gender are independent, given (controlling for)
department. Except for Department A, this model fits quite well, again indicating lack of gender bias.

Second, the framework of the scatterplot matrix can now be used as a general method for display-
ing marginal or conditional relations among a mixture of quantitative and categorical variables. For
marginal plots, pairs of quantitative variables are shown as a scatterplot, while pairs of categorical vari-
ables are shown as a mosaic display. Pairs consisting of one quantitative and one categorical variable
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Figure 18: Conditional mosaic matrix of Berkeley admissions. Each panel shows the conditional
relation, fitting a model of conditional independence model between the row and column variable,
controlling for other variable(s)

can be shown as a set of boxplots for each level of the categorical variable. For conditional plots, we
fit a model predicting the row variable from the column variable, partialing out (or conditioning on)
all other variables from each. For quantitative variables, this is just the partial regression plot.

Finally, an analog of the coplot for categorical data is an array of plots of the dependence among
two or more variables, conditioned (or stratified) by the values of one or moregivenvariables. Each
such panel then shows thepartial associations among the foreground variables; the collection of such
plots show how these as the given variables vary. Figure8 and Figure13are two examples of this idea,
using the fourfold display to represent the association in2� 2 tables.

Figure19 and Figure20 show two further examples, using the mosaic display to show the partial
relations [Admit][Dept] given Gender, and [Admit][Gender] given Dept, respectively. Figure20shows
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the same results displayed in Figure8: no association between Admission and Gender, except in Dept.
A, where females are relatively more likely to gain admission.
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Figure 19: Mosaic coplot of Berkeley admissions, given Gender. Each panel shows the partial relation,
fitting a model of independence model between Admission and Department.

Figure 19 shows that there is a very strong association between Admission and Department—
different rates of admission, but also shows two things not seen in other displays: First, thepatternof
association is qualitatively similar for both men and women; second the association is quantitatively
stronger for men than women—larger differences in admission rates across departments.
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