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Since its introduction, APL has frequently been touted as an ideal programming 
language for statistical applications. Among the attractive features of APL for statistics 
are its extensibility, the presence of primitives for operations such as sorting, matrix 
inversion, and arranging data, and powerful facilities for handling matrices and other ar- 
rays. Newer programming languages incorporating some of the features of APL-notably 
New S and XLisp-Stat-have been designed specifically for statistical applications. Is 
there still a niche for APL? 

We believe that APL2 continues to offer some significant benefits for statistical com- 
putation, including user-defined operators, nested arrays, and convenient implementation 
of arrays of any dimension. We use these characteristics of the language in the course 
of designing an extensible computing environment for data analysis and programming 
based on APL2 that incorporates some of the features of moder statistical programming 
languages, such as data objects, symbolic model specification, missing-data handling, 
and automatic search of a path of files. The system, which includes interactive statistical 
graphics, general linear models, and robust estimation methods, has been implemented 
using IBM's APL2 for PC-compatibles-both the standard version of this system and 
the freeware TryAPL2. The latter provides students with a free environment for modem 
data analysis and one in which they can explore the design of statistical software. 

Key Words: Bootstrapping; Data objects; Graphics; Missing data; Nested arrays; Robust 
regression; Statistical operators. 

1. INTRODUCTION 

The initials APL stand for A Programming Language, the title of a book written in 
1962 by Kenneth Iverson, describing a comprehensive, simple, and consistent mathemat- 
ical notation suitable for computer translation. By the late 1960s an interpreter and inter- 
active computer system were created for a version of APL (Falkoff and Iverson 1968). 
Soon after its appearance, and occasionally in the interim, APL has been touted as an 
ideal programming language and environment for statistical computation (see Anscombe 

1981): The language has powerful primitives for manipulating data arrays; it is naturally 
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suited to interactive computation; and it is extensible. The second generation of APL, 
called APL2, has been available for nearly a decade. APL2 adds a variety of significant 
capabilities to the language, the most important of which are generalized arrays-arrays 
whose elements are themselves arrays, which may be nested to arbitrary depth-and 
user-defined operators-programs whose arguments are functions. 

APL2 is arguably the most powerful language yet developed for expressing statis- 
tical computation. One's ability to get work done, however, depends as much on the 

programming environment as on the primitives of the language. Statistical developments 
in APL have largely taken the form of collections of APL functions, sometimes quite 
extensive, for statistical computations (Anscombe 1981; Friendly 1991; Heiberger 1989; 
Polhemus 1983; Thompson 1992). Newer models of programming environments de- 

signed specifically for statistical computation, graphics, and data analysis such as New 
S (Becker, Chambers, and Wilks 1988) and XLisp-Stat (Tierney 1990) have added sig- 
nificant concepts to the vocabulary of computational and graphical statistics, such as dy- 
namic, interactive graphics (e.g., brushing and linked data displays) and object-oriented 
computing. 

We describe here an environment for data analysis and programming implemented in 
APL2 and incorporating some of the features of these statistical programming languages, 
such as data objects, symbolic model specification, missing-data handling, and automatic 
search of a path of files. To give a feeling for the capabilities of the language, we 
describe some features of APL2 that offer significant benefits for statistical computation, 
including user-defined operators, nested arrays, and convenient computation on arrays 
of any dimension. We do not claim any overall superiority of APL2 as a language 
or APL2STAT as a statistical programming environment. Our goal instead is simply 
to describe some features of both that should be of interest to designers of systems for 
statistical computing and to those who may have used APL in the past. It is inappropriate 
for us to undertake a substantial tutorial on APL within the confines of this article. There 
are several good books on APL programming; we particularly recommend Gilman and 
Rose (1984) and Brown, Pakin, and Polivka (1988). An extended version of this article 

(Friendly and Fox 1993) that contains more tutorial examples is available from the 
authors. 

Nevertheless, we wish to communicate the essential characteristics of APL2 as a 

computer language and to illustrate its use in programming statistical applications. Section 
2 describes several features of APL2 that have been particularly useful in the development 
of APL2STAT. Section 3 provides a sample APL2STAT session to give the flavor of 

working in this environment. The basis for a simple object-oriented design for data and 
statistical methods in APL2STAT is described in Sections 4 and 5. Section 6 illustrates 
how interaction with the APL interpreter can be enhanced. 

2. OVERVIEW OF APL2 AND APL2STAT 

APL is typically implemented in a comprehensive system or environment that in- 
cludes facilities for interacting with an APL interpreter and for writing, editing, and 

debugging APL programs. IBM's APL2/PC product, for example, provides a debugging 
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A-- USING NESTED ARRAYS FOR PARTITIONED MATRICES 
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create vector X 

A matrix with Y.i,X 

A partition columns 

A show nested structure 

A transpose 

A multiply nested arra 

Figure 1. Using Nested Arrays for Partitioned Matrices. The primitive partition function (C) creates a parti- 
tioned matrix, splitting along rows (C [ 1 ] ) or columns (C [ 2 ] ); the left argument to partition specifies the rows 
and columns in each partition. The DISPLAYfunction shows the type, shape, and structure of each level of 
nesting. Numbers on the top line of each box give the dimensions of the object contained. The TIMES function 
multiplies simple or nested arrays. 

editor that automatically loads an offending function, with the cursor at the point of error, 
and allows single-stepping and tracing with convenient access to all defined variables. 
Modem APL environments include a "session manager" that maintains a log of the APL 

session, allows the user to edit on-screen APL expressions, and provides access to system 
facilities such as printers and files. Facilities for downloading APL fonts to printers and 

video displays, for reading and writing native (ASCII) files, and communicating with 
other operating-system services such as windowing systems and pointing devices are 
also provided. While the characteristics of the APL language are admirably standardized, 
these auxiliary characteristics are often implementation-specific and we do not describe 
them further. Here we focus on three features of APL2 that have been particularly useful 
in developing APL2STAT. These are nested arrays, iteration with data and with an "each" 

operator, and user-defined operators. 
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2.1 NESTED ARRAYS 

In the arrays of most computer languages, each element is a scalar-a single number 
or character. APL2 also provides nested arrays, in which each element can be a scalar 
or another (nested) array of any rank (number of dimensions), shape, depth, and type 
(numeric, character, or mixed). Hence, APL2 nested arrays are general, recursive, tree-like 
data structures. This arbitrary embedding of one array inside another gives APL2 arrays 
similar expressive power to the lists of Lisp. APL2 arrays are, however, more powerful 
(or at least more convenient) than lists in Lisp, because (a) APL2 arrays themselves 

implicitly contain the information about the structure (rank, shape, depth) of the elements 
at any level, and (b) APL2 contains a rich set of primitive functions for constructing data 

structures, selecting and assigning substructures, and applying functions to the data at 
the nodes at particular levels of a data structure. 

For statistical computation, nested arrays are particularly useful for the following 
kinds of operations (among others): (a) representing and operating on partitioned ma- 

trices; (b) parsing expressions entered as character strings; (c) generalizing univariate 

computations to multivariate ones; and (d) constructing data and analysis objects. For 

example, Figure 1 illustrates the use of nested arrays to compute the matrix expression 
Z'Z, where Z is the partitioned matrix [y IX] of a linear model. (The l function generates 
an integer sequence; p reshapes its right argument to an array of shape given by its left 

argument, and the , function joins arrays. The APL primitive for transpose is ~ for a 

simple array. For a partitioned matrix, transpose each submatrix and transpose the result, 
which is ~" in APL2.) 

2.2 ITERATION WITH DATA AND EACH 

APL2 is unlike most other programming languages in that there are minimal facilities 
for "control structure": there are no built-in operations like "do loops" for iteration. The 

only primitive control structure in APL is the "branch arrow," +, which operates as a go- 
to construct in defined functions. Although it is possible to write user-defined functions 
and operators to implement repetitive control structures such as "do," "while," and "until" 

loops (Eusebi 1985), this is usually not done. 

Instead, APL2 supplies implicit iteration over data structures in several ways that 

usually make explicit iteration unnecessary. These array operations are entirely data 
driven: computation is performed over an array and the data themselves control the 
limits of operation. First, all scalar functions extend to arrays, producing element-wise 
results of the same shape automatically (see the NORMAL JENSITY function in Figure 4, 

p. 393). Second, many APL2 functions and operators can be applied over specified axes 
of any array. For example, the reduction operator, /, iterates any primitive or defined 
function over one or more axes of an array. Thus, + / [1] M sums a matrix M over its 
first axis, rows. Similarly, the expression, M- [ 1 ] + / [ 2 ] M, divides each row by the row 

total, and +\ M+ [1] + / [2 ] M computes cumulative row proportions, an operation that 
would require two or more loops in conventional programming languages. 

In APL2, the each operator (") provides iteration over the items in simple or nested 

arrays. Again the limits of iteration are implicit in the data. A problem can often be 
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v 
[0] yhat+lowess_fit xi;localx;localy;near;w; AWEIGHTS 
[1] nReturn lowess fitted value at x = xi 
[21 uses"'tricube' 'wls' 
(31 near-r+tlx-xi n find indices of r x-values 
[4] localx*x[near] A .. closest to xi 
[51 localygy[nearl 
[61 w-lxi-tl+/ocalx 
[7] AWEIGHTS+^DELTA[near xtricube(localx-xi ) +w 
[8] yhat*(1,xi)+.xlocaly wls l,[1.51localx A get fit at xi 

V 
V 

[01 z-parm LOWESS yx;e;fraction;it; terations;n;r;x;y;yhat 
[1] A LOcally WEighted Scatterplot Smoother. 
[2] A.L (parm) 2-vector giving the smoothing fraction and no. of 
[31 A.L iterations or a scalar giving the smoothing fraction. 
[(] A.L Defaults: fraction=.5, 3 iterations. 
[5] A.R <yx> A 2-column matrix of y-values and x-values, or a 
[6] A.R quoted expression evaluating to a matrix. 
[7] A.Z <z> A 2-col. matrix of smoothed y- and sorted x-values. 
[8] A.0 ADELTA Final robustness weights. 
[91 uses"'select' 'get_data' 'lowess_fit' 'bisquare' 'MEDIAN' 'COL' 

[10] 'parm' default 0.5 3 
(11] (fraction iterations)*2t,parm,3 
[12] yx-get_data yx A handle matrix or string expression 
[13] yx-select yx A filter missing & omitted data 
[141 n-+x*yx[;2] A extract x, get indices to sort 
[151 y-yxin;l] A extract y, sorted by x values 
[161 x*+xnl A sort x 
[17] lDELTA4(n-px)pl 
[181 r+LO.5+nxfraction 
[191 it+0 
[201 iterate:+(iterations<it+it+1)/return 
[211 yhat+lowess_fit"x A fit at each x 
[221 e-y-yhat 
[231 4,DELTA-bisquare e+6xMEDIANle A new robustness weights 
[241 +iterate 
[251 return:z*yhat.COL x 

V 

Figure 2. Functions for Locally Weighted Smoothing. The LOWESSfunction uses the each operator to find the 
lowess fit at each abscissa. 

solved for a single case, and then generalized to work over a range of cases using each. 
For example, the function lowess_fit in Figure 2 finds the robust, locally weighted 
smoothed value for a single abscissa in a bivariate scatterplot. To find the lowess fit at 
several abscissas, it is then required only to lowess_fit" X, as shown in line [21] of 
the LOWESS function. 

Not all iteration can be subsumed by array operations and operators like each. The 
LOWESS function calculates weights for each observation to produce a robust smoothed 
curve. When the data (weights) change on each iteration, as they do in lines [20-24] 
of the LOWESS function, iteration usually must be programmed explicitly. 

2.3 OPERATORS 

APL2 generalizes the APL concept of operators (e.g., reduce and each, explained 
previously), which extend or alter the operation of functions. For example, all primitive 
scalar functions f, such as + and x, can have the reduction operator f/ applied to produce 
derived functions +/, x/, and so forth. The derived reduction functions then apply the 
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-- REDUCTION OPERATIC 
+/7 5 3 11 

2+/7 5 3 11 
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x/7 5 3 11 
55 

L/7 5 3 11 

A-- SCAN OPERATIONS 
+\7 5 3 11 

12 15 26 
x\7 5 3 11 

35 105 1155 
L\7 5 3 11 

533 

A-- GENERALIZED 
1 2 3-.*1 2 3 

1 1 
4 8 
9 27 

1 2 3..>1 2 3 
0 0 
1 0 
1 1 

V. !V+O 1 2 3 4 
1111 
123 4 
0136 
00 1 4 
0001 

A sum reduction 

A running pairwise sums 

A times reduction 

R minimum 

A cumulative sum 

A cumulative product 

A sequential minima 

OUTER PRODUCTS 
A i3 raised to each power 

A lower triangular matrix 

A Pascal's triangle to order 4 

DF+2* 3 A degrees of freedom 
P-.95 .975 .99 .995 A probabilities 
(' ,P), [1]DF,(DF .CHISQUARE_QUANT P) A make a table 

0.95 0.975 0.99 0.995 
2 5.9915 7.3778 9.2103 10.597 
4 9.4779 11.132 13.265 14.848 
8 15.505 17.532 20.087 21.952 

Figure 3. Some Expressions Using APL2 Primitive Operators. The reduce operator (f/) applies any function f 
across one or more axes of an array. Scan (f \) produces cumulative functions, and outer product, o . f applies 
a function f between pairs of items from its left and right arguments in all combinations. These operators work 
in the same way with user-definedfunctions, as shown by the use of outer product with the CHISQUARE_QUANT 
function to generate a table of x2 quantiles. 

function argument to the operator between items of its data argument and give, for + 
and x, the sum and product, respectively, of the data values over the last (or specified) 
coordinate. 

Sum- and product-reduction operators are so generally useful that they have been 

implemented in New S, XLisp-Stat, and various matrix languages such as SAS/IML 
and Gauss. Although other languages permit functions as arguments to functions, APL2 

operators are particularly powerful, in that (a) they apply to all primitive functions of a 

particular class (such as scalar functions), (b) they apply equally to user-defined functions, 
and (c) the operators themselves may be user-defined. 

Other APL2 operators include scan, f\, and generalized outer product, . f, some 

applications of which are illustrated in Figure 3. The derived functions of scan apply 
the function f/ to each of the first i items of its right argument for i = 1,2,..., 
giving cumulative sums and products for +\ and x\. Outer product, ?.f, generalizes 
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A -- NUMERICAL INTEGRATION B! SIMPSON'S RULE 
V 

[ 0 Z-ERROR(P INTEGRATE)RANGE;AR 
[1] ARecursive integration operator 
[2] 'ERROR' default 0.00001 
[ 3] + (ERROR< | (2(F si pson)RANGE)-Z+-4(F si pson)RANGE) /RECUR 
[4 -+0 
[ 5 RECUR: AR+RANGE, 0. 5 x +/RANGE 

6 ] ERROR*ERROR+2 
[7] Z*(ERROR(F INTEGRATE)AR(1 3])+ERROR(F INTEGRATE)AR[3 2] 

V 

V 
[0] R+N(F simpson)RANGE;T;FOIO 
[1] ASimpsons rule operator 
121 OIO+1 
[ 3 + ( - -/RANGE) *NN+ 2 N 
(4] R*(T+3)x((1,(N-1)p4 2),l)+.xF RANGE[1J+TxO,tN 

V 

A-- Integrate exponential function from 0 to 1 
1E-8 * INTEGRATE 0 1 

1.718282 

V 
(01 Z+NORMAL_DENSITY X 
[1] ACalculate standard normal density function 
12] Z*(*-0.5xX*2)+(o2)*0.5 

NORMAL_DENSITY 0 1 2 
0.3989423 0.2419707 0.05399097 

A-- Integrate the normal density 
NORMAL_DENSITY INTEGRATE -1 1 

0.6826896 
NORMAL DENSITY INTEGRATE 0 10 

0.5000004 
1E-8 NORMAL_DENSITY INTEGRATE 0 10 

0.5 
Figure 4. Defined Operators for Numerical Integration of a Scalar Monadic Function. The left operand to 
INTEGRATE specifies the function, which can be an APL primitive or user-definedfunction of a single argument. 
The first example integrates the exponential function, *, over the range (0,1). The remaining examples find areas 
under the standard normal curve by integrating the NORMAL_DENSITYfunction. 

construction of a multiplication table, applying the function f between pairs of items 
from its left and right arguments in all combinations. 

User-defined operators add considerably to the expressive power of APL2 for statis- 
tical computing, because they provide the basis for algorithms that apply automatically to 
an entire class of functions. A simple operator for numerical integration of an arbitrary 
function is illustrated in Figure 4. The INTEGRATE function (after Sykes and Hawkes 

1989) also illustrates the use of tree-recursion in APL functions and operators. Simp- 
son's rule is used on the original interval with 2 and 4 subintervals and the operator stops 
if the difference between these two approximations is less than the accuracy specified. 
Otherwise, INTEGRATE is applied recursively to both halves of the original interval. 

Similarly, one can define an operator for bootstrap resampling of an arbitrary sta- 
tistical estimator. The BOOTSTRAP operator, shown in Figure 5, applies to any monadic 

(one-argument) function that takes a vector or matrix as a right argument and returns 
an estimated quantity (which may be an array) as an explicit result. Figure 6 illustrates 
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V 
(0] r+reps(fn BOOTSTRAP)data;n;bootstrap 
[1] f Operator for computing bootstrapped sample estimates. 
[2] R.L (reps) Number of bootstrap replications. Default: 100 
[3] n.L <fn> A function that takes a data matrix as a right 
[41 A.L argument and returns a vector or estimates. 
[5] A.R <data> Input data matrix or vector. Rows of the data 
(61 A.R matrix are sampled repeatedly with replacement. 
[7] A.Z <r> A matrix containing (by rows) the result of fn for 
[81 A.Z each bootstrap replication. 
(91 r+OFX 'r*(fn bootstrap)r' 'r,fn data[?npn;1' 
[10] uses"'default' 'select' 'get_data' 'null' 'COL' 
[111 'reps' default 100 
[121 n+1+pdata*COL select get_data data 
[13] ('Result for full sample: ')(fn data) 
(14] 'Beginning BOOTSTRAP replications ' 

[151 refn bootstrap"ireps 
116] 'BOOTSTRAP replications completed.' 
[17] r-+[2]r 

Figure 5. An APL2 Operatorfor Bootstrap Sampling. The essential work is done by the bootstrap sub- 

operator, defined here as a local operator in line [9]. The expression data[ ?npn; ] generates a random 

sample with replacement of the integers from 1 to n, which select the corresponding rows of data to pass to 
the function fn. The iteration required for reps replications is carried out in line [ 15] of BOOTSTRAP. 

A Define a function to return mean and variance 
V 

[01 R-STATS X 
[11 R+(MEAN X),VARIANCE X 

V 

DATA+* NORMAL_RAND 50 A 50 lognormal values 

R-STATS BOOTSTRAP DATA R bootstrap means and variances 
Result for full sample: 1.5357 3.5881 

Beginning BOOTSTRAP replications 
BOOTSTRAP replications completed. 

('MEAN' 'VAR'),[1]5+([1]R A first 5 bootstrap replications 
MEAN VAR 
1.5824 3.8957 
1.4367 2.6835 
2.1826 7.8176 
1.9824 5.5228 

1.174 1.1709 

DESCRIBE R A summarize 
Col 1 Co _2 

Mean 1.5651 3.7373 
Standard deviation 0.25711 1.3982 
Minimum 1.126 1.1541 
Lower hinge (Q1) 1.381 2.651 
Median 1.5329 3.652 
Upper hinge (Q3) 1.7305 4.6877 
Maximum 2.3215 7.8176 
N (selected, t*'.) 100 100 

Figure 6. An APL2 Operatorfor Bootstrap Sampling. The BOOTSTRAP operator is applied to the mean and 

variance of a log-normal sample. 
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the computation of bootstrap means and variances of a random lognormal sample. Other 
APL2STAT operators include MD (see Subsection 4.2), which extends all scalar functions 
to handle missing data, QUANTILE_PLOT, for Q-Q plots of any distribution function, a 
TIMER operator to time the execution of any function, and TABLE (Subsection 4.4) which 
calculates multiway tables of any (array-valued) statistic. 

Finally, we simply mention two related APL programming features that enhance 
the capabilities of functions and operators: (a) The primitive execute function (_) takes 
a character-string argument and executes that string as if typed to the interpreter. The 
character-string argument, of course, can be constructed by other functions and operators 
under program control. (b) APL functions themselves can be turned into character arrays 
containing their definitions, and character arrays can be defined as functions under pro- 
gram control. Functions so defined can be made local to the function that creates them 
(see Figure 5), in which case they disappear when that function completes. These features 
allow the use of unnamed function-expressions similar to the lambda-expressions of Lisp 
(Benkard 1990) and pure functions of Mathematica (see Figure 13, p. 403). 

3. APL2STAT 

APL2STAT is an integrated set of over 300 APL2 programs for statistical analysis, 
with an emphasis on statistical graphics. The programs use a simple object-oriented 
system and employ common procedures for accessing data and storing results. Because 
APL2STAT is not a statistical package, but rather is built upon the APL2 programming 
language and environment, it is simple to modify and supplement. 

In its current form, APL2STAT includes, in addition to standard statistical sum- 
maries, functions for least-squares linear regression and linear models, for robust linear 
models using iteratively reweighted least squares, for regression with autocorrelated er- 
rors, and for categorical data analysis using loglinear models and dichotomous and poly- 
tomous logit models. Extensive graphics capabilities include a variety of scatterplots, 
boxplots, scatterplot matrices, partial regression and residual plots, regression influence 
plots, Box-Cox and Box-Tidwell transformation constructed-variable plots, lowess scat- 
terplot smoothing, robust multivariate outlier plots, and kernel-density estimation. When- 
ever sensible, points may be interactively identified, deleted, moved, and/or highlighted 
using a pointing device (such as a mouse) or the cursor keys. 

The APL2/PC implementation provides high-resolution (VGA, 800x640) full-screen 
graphics or splitscreen graphics with a session-manager text portion at the bottom, but 
only a single graphics window may be active at any time. All APL2STAT graphics may 
be captured to graphics objects, replayed, or printed to a Postscript-capable device. 

All APL2STAT functions are self-documenting: each function contains comment 
lines describing the purpose, syntax, and result (see the LOWESS function in Figure 2, p. 
391, or the BOOTSTRAP operator in Figure 5. One function, HOW, extracts, formats, and 
displays the description of any function, and another function, APROPOS, searches the 
active workspace and all APL2STAT libraries for the names of functions and operators 
that contain a given string. 
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3.1 SAMPLE APL2STAT SESSION 

The illustrative session shown in Figure 7 is meant to convey the flavor of using 
the APL2STAT system; the illustration is necessarily abbreviated, however. When the 
APL2STAT SHELL workspace is loaded, the SHELL function (see Section 6) is automati- 

cally invoked. Subsequent lines are entered under the control of the SHELL, as evidenced 

by the statement-number prompt. 

* In line 1, for example, the PRINT function and the DUNCAN data set object (Subsec- 
tion 4.1) are automatically copied into the active workspace from files located on 

)LOAD SHELL 
SAVED 1993-05-21 10.55.52 SHELL 

APL2STAT (SHELL) [Version 2.0] 1993 John Pox & Michael Friendly 
Enter )QUIT to exit 

1> PRINT 'DUNCAN' 
INCOME EDUCATION PRESTIGE 

accountant_for_a_large.business 62 86 82 
airline_pilot 72 76 83 
architect 75 92 90 

janitor 7 20 8 
policeman 34 47 41 
restaurant_waiter 8 32 10 

2> USE 'DUNCAN' 
Variables created: INCOME EDUCATION PRESTIGE 

3> USING 
Current dataset: DUNCAN 
Contains 45 observations 
45 observations selected 
45 observations with valid data 

4> PAIRS 'PRESTIGE, INCOME AND EDUCATION' f SCATTERPLOT MATRIX 

5> LINEAR_MODEL 'PRESTIGEsINCOME+EDUCATION' 

6> OPP-5 A show 5 significant digits 

7> PRINT 'LAST_LM' 
GENERAL LINEAR MODEL: PRESTIGE*INCOME+EDUCATION 

Coefficient Std.Error t p 
CONSTANT -6.0647 4.2719 -1.4197 0.16309 
INCOME 0.59873 0.11967 5.0033 0.00001061 
EDUCATION 0.54583 0.098253 5.5554 1.7452E-6 

DP SS F p 
Regression 2 36181 101.22 4.6728e-11 
Residuals 42 7506.7 0 
Total 44 43688 

R-SQUARE = 0.82817 SE = 13.369 N = 45 

Source SS DF F p 
CONSTANT 360.22 1 42 2.0154 0.16309 
INCOME . 4474.2 1 42 25.033 0.00001061 
EDUCATION 5516.1 1 42 30.863 1.7452E-6 

8> INFLUENCE_PLOT 'LAST_LM' n RSTUDENTS, HATVALUES. Cook'S D'S 

9> GRAPHICS 'OFF' A exit split-screen graphics mode 

10> BIGGEST GET 'LAST_LM' 'COOKS D' 
minister 0.56638 
railroad_conductor 0.22364 
reporter_on_a.daily_newspaper 0.098985 
railroad engineer 0.080968 
building_contractor 0.058524 

Figure 7. Sample APL2STAT Session. 
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the search path (Section 6). The generic PRINT function employs a print method 
(Section 5) appropriate for a data set object to display the Duncan data set, labeling 
the output with observation and variable names. (In the interest of brevity, most 
of the output is excluded.) 

* The USE function makes the Duncan data set current, defining appropriately named 
variables as vectors in the active workspace, and performing other tasks such as 

defining observation names and setting the data-selection vector (Subsection 4.3). 
USING reports the current data set. 

* The PAIRS function creates the scatterplot matrix shown in Figure 8. The "high- 
lighted" observations and their names were identified interactively using a mouse. 

* The LINEAR_MODEL function returns an object, named LAST_LM by default, pro- 
duced by regressing prestige on income and education. Note that the right argu- 
ment to LINEAR_MODEL is a symbolic model formula, potentially specifying inter- 
actions, variable transformations, nesting, et cetera. If either independent variable 

11> OMIT" 'minister' 'railroad_conductor' 

12> 'NEW_FIT' LINEAR_MODEL 'PRESTIGEsINCOME+EDUCATION' 

13> PRINT 'NEW FIT' 
GENERAL LINEAR MODEL: PRESTIGE*INCOME+EDUCATION 

Coefficient Std.Error t p 
CONSTANT -6.409 3.6526 -1.7546 0.086992 
INCOME 0.8674 0.12198 7.1113 1.3428E-8 
EDUCATION 0.33224 0.09875 3.3645 0.0017048 

DF SS F p 
Regression 2 36815 141.26 1.4015e-10 
Residuals 40 5212.6 0 
Total 42 42028 

R-SQUARE = 0.87597 SE = 11.416 N = 43 

Source SS DP F p 
CONSTANT 401.2 1 40 3.0787 0.086992 
INCOME 6590 1 40 50.57 1.3428E-8 
EDUCATION 1475.1 1 40 11.32 0.0017048 

14> HOW 'HYPOTHESIS' 
Purpose: 

Tests the linear hypothesis given by <h> for <model> 
Chooses an appropriate method for the type of <model> 

Usage: 
r-model HYPOTHESIS h 
<model> is the name of a model object, enclosed in 
<h> is a vector or matrix specifying a linear hypothesis 

Examples: 
'MODEL1' HYPOTHESIS 2 4 p 0 1 0 0 0 0 1 0 
M MODEL1 has 4 coefficients 

15> 'NEW FIT' HYPOTHESIS 0 1 -1 
SS = 848.68 F[ 1 40 1 = 6.5126 p = 0.014646 

16> 'LAST_LM' HYPOTHESIS 0 1 -1 
SS = 12.195 F[ 1 42 1 = 0.068233 p = 0.7952 

17> )QUIT 

Figure 7. Continued. 
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Figure 8. Scatterplot Matrix Produced by the PAIRS Function. Clicking on a point causes the observation to 
be labeled in each panel. I = minister; 2 = railroad conductor; and 3 = railroad_engineer. In the original, the 

correspondence between names and flagged points appears in the display. 

had been qualitative (i.e., a character variable), then an appropriate set of dummy 
regressors or contrasts would have been generated automatically. Printing the 
linear-model object produces a summary report (cf. the result of printing a data 

set). 
* The INFLUENCEPLOT function constructs the graphical display shown in Figure 

9. Again, the labeled data points were identified interactively. 
* The BIGGEST function reports (by default) the five largest Cook's D's. These 

values are extracted by the object-accessor function GET from the linear-model 

object (Subsection 4.1). 
* The OMIT function excludes two observations from the subsequent analysis by 

locating the position of these observations in the data set and setting to zero the 

corresponding elements of the selection vector (see Subsection 4.3). The linear 
model saved in the object named NEW_FIT is therefore based on the remaining 
43 observations. 

* The HOW function extracts and prints documentation for the HYPOTHESIS function, 
which is then used to test linear hypotheses for the two regression models fit to 

the Duncan data. HYPOTHESIS, like PRINT, is a generic function which chooses 

a method appropriate to the type of the object that it processes. 
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Figure 9. Influence Plot Showing Studentized Residuals, Hatvalues, and Cook's D's for Duncan's Regression. 
The circles plotted have areas proportional to Cook's D. The labeled observations were identified interactively. 
The broken horizontal lines are at 0 and ? 2; the vertical lines are at 2 x and 3 x the average hatvalue. 

* The last line ()QUIT) exits the the SHELL function, returning the user to the APL2 

interpreter. This and other APL system commands are simulated under the SHELL. 

4. APL2STAT DATA 

The generalized arrays of APL2 alone are rich enough to handle the problem of 
both character-valued and numeric-valued variables in a single data object. A convenient 
statistical computing environment must also provide for (a) meaningful variable names 
and observation labels; (b) uniform handling and propagation of missing data; and (c) 
selection of the variables and observations to be used in a particular analysis or plot. This 
section describes how the representation of DATASET objects in APL2STAT provides 
for these requirements. 

4.1 DATASET OBJECTS 

APL2STAT employs a simple object system for organizing data sets and the results of 
analysis functions and operators, such as the result of fitting a linear model or building 
a table of frequencies or other statistics. The design of the APL2STAT object system 
was influenced by Alfonseca's (1989a; 1989b) work on object-oriented programming in 
APL2. An APL2STAT object is a two-column nested array consisting of slot names and 
slot values, with one row for each slot. All objects inherit properties (slots and methods) 
from other objects, with the exception of the root object, OBJECT_PROTO. 

All objects contain the slots PARENT and TYPE. The PARENT slot gives the name of 
the immediate ancestor of the object, which is OBJECTJPROTO for the data set prototype 
(and DATASET_PROTO for dataset objects created from this prototype). In the present 
version all objects inherit from a single parent; multiple inheritance would be relatively 
easy to implement, however, by making the value of the PARENT slot a nested vector. 

I I 
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SAMPLE 
PARENT DATASET_PROTO 
TYPE DATASET 
VARIABLES EDUCATION INCOME GENDER STATUS 
OBSERVATIONS FRED VALERIE ANITA MARIA JOHN JIM ABIGAIL JUAN 
DATA 12 25 M 1:Low 

16 . F 3:Hi 
9 18 F 2:Med 

12 21 F 2:Med 
20 55 M I:Low 
12 30 M 1:Low 
14 45 F 3:Hi 
. 51 M 3:Hi 

CODEBOOK Sample data set. The variables are: 
[1] Education (years) 
[2] Income ($000) 
[3] Gender ('M'/'F') 
[4] Status ('Low'/'Med'/'Hi') 

Figure 10. A Sample DATASET Object. A DATASET object is a 6 x 2 nested matrix. The items in the first 
column are enclosed (scalar) character names of slots; those in the second column give the slot values. 

DATASET objects also contain the following slots: (a) VARIABLES-a nested vec- 
tor of variable names; (b) OBSERVATIONS-a nested vector of observation labels; (c) 
DATA-the data matrix; and (optionally) (d) CODEBOOK-a character matrix giving de- 

scriptive information about the source of data, variable encodings, and so forth. A sample 
DATASET object is shown in Figure 10. Data set values may be numeric or character 
scalars (including character strings of arbitrary length enclosed as nested scalars). The '.' 
values in the DATA slot represent missing data, as explained in the following subsection. 

By convention, character variables are treated by many functions as categorical (e.g., 
LINEAR_MODEL). Character data beginning with a left bracket, parenthesis, or a numeral 

(e.g., '1: Low' or [ 1 ] Low'), are treated as ordered categories where appropriate, the 
order specified by the implicit sort-order of APL characters. 

DATASET objects may be defined directly using APL2STAT functions or by reading 
data from DOS files. Consider the following illustration, assuming that the data already 
reside in a three-column matrix SAMPLE-DATA; that observation names are contained 
in the (nested) vector NAMES; and that a codebook for the dataset is contained in the 
character matrix SAMPLE_CB. 
MAKE 'DATASET_PROTO' 'SAMPLE' 

PUT 'SAMPLE' 'DATA' SAMPLE-DATA 
PUT 'SAMPLE' 'VARIABLES' ('EDUCATION' 'INCOME' 'GENDER') 
PUT 'SAMPLE' 'OBSERVATIONS' NAMES 

PUT 'SAMPLE' 'CODEBOOK' SAMPLE_CB 

The function MAKE constructs a new instance of a prototype, filling in the PARENT 
and TYPE slots. PUT changes the value of the named slot of an object or creates that slot 
if it does not exist. A corresponding function, GET, retrieves the value in any slot. (See 
line 10> of Figure 7 for an example.) The function SLOTS lists an object's slot names. 

400 



USING APL2 FOR STATISTICAL COMPUTATION 

VSTANDARDIZE [ O V 
[0] Z+MS STANDARDIZE X;M;S;shape 
[1]^Standardize a data matrix or vector 
[21,.L (MS) 2-vector giving mean & standard deviation of result 
[3]A.L Default: 0 1 
[4]R.R <X> Data matrix or vector 
[5]R.Z <Z> Standardized data matrix or vector 
[6] uses 'MEAN' 'VARIANCE' 'COL' 
[7] uses"'default' 'select' 'get_data' 'deselect' 
[8] 'MS' default 0 1 
[9] (M S)-MS 

[10] shapepX+*se/ect get_data X 
[11] Z+(X-[2]MEAN X)+[2](VARIANCE X+COL X)*0.5 
[121 Z-deselect M+SxZ+shapepZ 

X+12 19 '.' 5 2 11 

STANDARDIZE X 
0.3328 1.3917 . -0.72611 -1.1799 0.18153 

Figure 11. The STANDARDIZE Function Applies the select and deselect Filters to Process Missing 
Values Properly. 

4.2 MISSING DATA 

Missing data in APL2STAT objects are represented by the period character, '. 
All APL2STAT high-level functions handle missing data automatically by applying a 
filter (select) to remove observations with missing data at the start of an operation. An 
inverse filter (deselect) is then applied to the result, filling in missing value codes where 

appropriate. As an illustration, consider the STANDARDIZE function shown in Figure 11 
that recenters and scales each column of a data matrix to specified (or defaulted) mean 
and standard deviation. These computations are sandwiched between the select filter 
in line [10] and the deselect filter in line [12]. 

Although high-level APL2STAT functions handle missing data appropriately, the 
APL2 primitive arithmetic functions do not accept the '.' missing data character. These 
functions typically signal a DOMAIN ERROR and halt computation, as illustrated in Figure 
12. To avoid this difficulty, APL2STAT has a missing data operator, MD, that applies 
any scalar function (primitive, user-defined, or derived) to its arguments, returning a 

missing value whenever either argument is missing. The MD operator is used mostly 
to perform calculations or transformations directly in APL2 on data that may contain 

missing values. Even if the argument(s) are not missing, MD traps the computation; when 
an error is generated, MD prints a warning message and returns a missing value. 

4.3 SELECTING OBSERVATIONS 

In statistical analysis one often wishes to analyze the data for a subset of observations 
in a data set, either to perform parallel analyses of different groups or to gauge the effect 
of setting certain observations aside. Most statistical systems require creating new data 
sets for each such selection. In APL2STAT the same mechanism used to filter missing 
data allows observations to be easily included or excluded from an analysis without 

modifying the data. 
APL2STAT maintains a global system variable, ASELECT, a binary vector of length 
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On'SCORES+3 3p15 11 6 '.' 8 9 13 16 12 
15 11 6 

8 9 
13 16 12 

MEAN SCORES n MD not required 
14 13.5 9 

eSCORES n log does not compute 
DOMAIN ERROR 

eSCORES A log does not compute 
A 

eMD SCORES A '.' stays missing 
2.7081 2.3979 1.7918 

2.0794 2.1972 
2.565 2.7726 2.4849 

+MD/SCORES A row sums 
32 . 41 

SCORES[1 ; 1 -0 

OMD SCORES A log 0 is trapped 
DOMAIN ERROR, Argument: 0 

2.3979 1.7918 
2.0794 2.1972 

2.565 2.7726 2.4849 

Figure 12. Operations With Missing Data. MD allows direct APL computations with missing data. The function 

argument to MD may include a primitive (such as (, natural log), user-defined, or derived functions (such as 

+/). Errors with nonmissing data issue a warning message and return a missing value. 

equal to the number of observations in the current data set. ASELECT is initially all 

is, corresponding to selection of all observations. The select function uses the APL 

compress operator, /, in the expression Z?-(AMISSINGx ASELECT)/[1]X to return the 
rows of the data vector or matrix, X, that are selected (ASELECT [ I] =1) and that contain 
no missing values (AMISSING [I] =1). Hence, changing an element of ASELECT to 0 
causes the corresponding observation to be ignored in subsequent computations, though 
it remains in the data set. Observations may be excluded with the OMIT function (for 
example: OMIT" 'Detroit ' Toronto'). The observation selection vector may also be 
set by a recode or as the result of a logical expression, as in ASELECT- INCOME> 2 0 0 0. 

4.4 TABLE OBJECTS 

In the analysis of multiway tables by linear and log-linear models, the factors that 

classify the observations are implicit in the table dimensions. Rather than force the user 
to generate the factor variables explicitly, as is done in GLIM, SAS, New S, and most 
other statistical systems, APL2STAT TABLE objects contain just the multiway table and 
information describing the variables and dimensions of the table. 

TABLE objects may be defined by APL2STAT functions or from data entered at the 

keyboard. In addition, the TABLE operator constructs a TABLE object from a data matrix 
whose columns include a set of one or more factor variables. The operator applies any 
(monadic) function- primitive, defined, or derived from another operator-to calculate 
a statistic (which may itself be an array) for the observations classified into the cells 
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N*500 R number of observations 
INCOME*10+?Np40 n uniform [10,50] 
REGION( 'EAST' 'CENTRAL' 'WEST') [?Np 3 
GENDER*' MF' [?Np2 

8+[1] INCOME, REGION AND GENDER n first 8 observations 
50 WEST M 
30 WEST F 
15 EAST F 
47 WEST M 
34 CENTRAL F 
28 CENTRAL M 
43 EAST M 
16 EAST F 

PRINT MEAN TABLE 'INCOME ON REGION AND GENDER' 
Row I Co I umn 
REGION I GENDER 

F M 
CENTRAL 30.082 30.61 
EAST 31.652 32.881 
WEST 31.095 30.397 

'(pw)(MEAN w)' TABLE 'INCOME ON REGION AND GENDER' 
LAST_TABLE 

LAST_TABLE 
PARENT TABLE_PROTO 
TYPE TABLE 
TABLE 85 30.082 77 30.61 

92 31.652 84 32.881 
84 31.095 78 30.397 

VARIABLES REGION GENDER 
CONTENTS INCOME ON REGION AND GENDER 
DIMENSIONS 3 2 
LEVELS CENTRAL EAST WEST F M 

Figure 13. Calculating a Table of Means. The TABLE operator applies the MEAN function to INCOME for 
observations classified by REGIONand GENDER The result is stored in a TABLE object (named LAST_TABLE) 
that is passed to the PRINTfunction. The second example uses an anonymous function to construct a table whose 
entries are the sample size (pw) and mean in that cell. In anonymous functions the right argument is represented 
by w and the left argument (if present) by a. 

defined by the factor variables. For example, the initial lines of Figure 13 create 500 
random observations on variables INCOME, REGION, and GENDER. The statement, MEAN 
TABLE 'INCOME ON REGION BY GENDER', applies the MEAN function to the INCOME 
variable for cells cross-classified by REGION and GENDER. (ON and BY are APL2STAT 
functions that join columns to form a matrix. By convention, TABLE uses the first column 
as the analysis variable, and creates a TABLE object named LAST_TABLE by default.) 

It is simple to use the TABLE operator to construct contingency tables (e.g., 
+/ TABLE '1, GENDER BY REGION'), but because this is a common operation, a 
COUNT function is provided. Objects created by COUNT descend from their own prototype, 
which itself is a descendent of the table prototype. 

5. METHODS 

The APL2STAT object system incorporates methods appropriate for classes of objects 
in the form of generic functions that automatically invoke class-specific subfunctions. 
For example, the PRINT function prints an object on the screen in an appropriate format. 
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Other examples of methods are HYPOTHESIS, which tests linear hypotheses on model 

objects, for example, by Wald or F-tests, and TEST, which compares nested models, 
for example, by likelihood-ratio or incremental F-tests. See the illustrative APL2STAT 
session in Figure 7 (p. 396) for the use of PRINT and HYPOTHESIS methods. 

A generic function such as PRINT calls a specific subfunction appropriate for the 

type of object that it processes. By our convention, the specific subfunctions have names 
of the form function_TYPE: for example, print_DATASET and print_LM. The METHOD 

function searches in the active workspace and along the search path for a method appro- 
priate to an object; if no such method exists, then the ancestors of the object are searched 
in order of proximity. Thus, for example, if no more appropriate method exists, an object 
is printed with the function print_OBJECT, belonging to the root object in the object 
tree. 

In the current version of APL2STAT, methods exist as global functions, either in the 
active workspace or in library files (Section 6), but it would be simple to achieve greater 
encapsulation by adding a slot for each method specific to a given object containing 
the character representation of the corresponding method function (created by the APL2 

system function ECR). To access the method, the character representation of the function 
would be extracted from the object, defined as a local function (via the "fix" system OFX), 
and executed. As in the current version of APL2STAT, methods would be inherited via 
the object tree, and indeed almost all methods would reside in prototype objects. 

Finally, it is trivial to change the style of methods from generic function calls to mes- 

sages sent to objects. A message function with syntax MESSAGE 'object' 'method' 

optional arguments simply invokes the corresponding method function, as in MES- 
SAGE 'LAST_LM' 'PRINT'. We prefer the more direct style of PRINT, but both styles 
are supported. 

6. THE APL2STAT SHELL 

All interaction with APL, and therefore with APL2STAT, takes place under control of 
the APL interpreter, which operates in a "read-evaluate" loop, as in Lisp and other similar 
interactive systems. APL2STAT augments the APL2 interpreter and session manager 
by running under control of a shell program-an APL2 function that simulates, but 

extends, the normal read-evaluate loop. The SHELL program provides for dynamic loading 
of functions and data; implements simple memory management; and simulates (and 
modifies) the behavior of APL system commands, which cannot normally be issued under 

program control. The APL2STAT system currently consists of several hundred functions, 

operators, and system variables. Because APL programs can only access other programs 
and data contained in memory (the active workspace), it is usually necessary to load 
all functions and subfunctions before they are invoked. This is not a serious limitation 
for the commercial APL2 interpreter running on a well-endowed 386 or better machine 

(because the entire APL2STAT system occupies less than 500 Kbytes of memory), but 
it is a substantial limitation when running APL2STAT under the TryAPL2 system. 

All APL2STAT functions are therefore written to check for the presence of auxiliary 
functions and variables, and to copy them from library files if they are not already present 
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in the active workspace. A global system variable, APATH, is a nested vector containing 
the pathnames of one or more library files. Each APL2STAT function begins with a call 
to the uses function, such as this line from the STANDARDIZE function shown in Figure 
11: 

uses 
" 

'MEAN' 'VARIANCE' 'COL' 

The uses function then searches through the files named in APATH for any function, 
operator, or variable that is not present in the active workspace. Because the APL objects 
in the APL2STAT library files are marked by type (function, operator, or variable), this 
search is relatively efficient, although there is usually a noticeable pause the first time 

many functions need to be loaded. (The uses function takes an optional left argument 
to specify the type of object sought, with a default of 'F' for function.) 

In addition, the SHELL parses each expression entered by the user for names of pro- 
grams or data objects. Any objects not present in the workspace are searched and loaded 

along the APATH. Because the object type is not known, however, the SHELL searches 
first for a function, then for a variable, and finally for an operator. The APL2STAT func- 
tion ATTACH adds the name of a file containing APL objects to the search path, allowing 
the position on the path to be specified. The search path therefore provides a conve- 
nient way to extend the APL2STAT system, to access data files, or to test and replace 
APL2STAT functions with new versions because the new versions will be found first if 

they are placed earlier on the path. 

7. CONCLUDING REMARKS 

In this article, and through the design of APL2STAT, we have attempted to demon- 
strate the potential of APL2 as a programming language for statistical applications, and 
to suggest that APL's reputation for opacity is undeserved. It is difficult, however, to 

convey one of the principal virtues of APL2: the ease with which applications can be 

developed and coded. One of us (Fox), for example, designed and programmed the basics 
of the APL2STAT object system, programming environment, and graphics system, along 
with perhaps two-thirds of the current APL2STAT functions and operators in six weeks. 

An example of the ease with which nonstandard problems may be addressed with 
APL2STAT is given in Figure 14, which illustrates how a least-squares regression anal- 

ysis can be bootstrapped by resampling the vector of residuals when the model-matrix 
is to be treated as fixed. A fixed model-matrix is at least arguably appropriate for Dun- 
can's regression. The initial least-squares fitted values and residuals are extracted from 
an object returned by the LINEAR_MODEL function; 100 bootstrap samples of residuals 
are selected; and these resampled residuals, along with the fitted values, are employed 
to obtain bootstrapped replications of the regression coefficients. The solution to this 

problem in APL2 was produced, from idea to output, in less than five minutes. The com- 

putations themselves, including 100 matrix inversions, were essentially instantaneous on 
a PC with a 486 processor. Likewise, a general function for robust linear regression pro- 
viding M-estimates (e.g., Huber 1981) for arbitrary, user-defined weight functions and 
scale estimates comparable to that of Heiberger and Becker (1993) was programmed in 
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LINEAR_MODEL ' PRESTIGE.INCOXE+EDUCATION' 

YHAT*GET 'LASTLMH' 'FITTED VALUES' 

E+GET 'LASTLM' ' RESIDUALS' 

A 100 bootstrapped samples of residuals 
EE(-c[2 (100,pE)pE[?(IOOxpE)ppEl 

A 100 bootstrapped Y vectors 
YY4-(cYHAT)+" EE 

A bootstrapped coefficients 
B4-: [21 YY "c 1INCOME AND EDUCATION 

MEAN B A means of bootstrapped coefficients 
-5.827960301 0.5932116321 0.5459577236 

VARIANCE B A variances of bootstrapped coefficients 
16.45033015 0.0141370544 0.008286909976 

Figure 14. Bootstrapping the Duncan Regression Model With a Fixed Model-Matrix 

under an hour. Experiences such as these convince us that there is still a niche for APL 
in statistical computation for both research and teaching. 

There are several directions in which we plan to develop APL2STAT. Because 
of the rich heritage of statistical applications programmed in APL (Friendly 1991), 
and because of the manner in which data are handled in APL2STAT, it will be rel- 

atively simple to incorporate additional statistical methods. We also plan to make the 
APL2STAT graphical system more object-oriented-at present, APL2STAT graphics ob- 

jects are simply nested vectors of calls to a graphics processor, which can be saved, 
added to, or replayed, but which are not easily modified or linked to other graphs. 
This extension would be most useful in a graphical environment supporting multiple 
graphics windows, such as the IBM APL2 implementation for OS/2, RS/6000, and 
Sun/Solaris. Readers wishing to experiment with APL2STAT may obtain the APL2 and 

TryAPL2 versions by anonymous ftp from watservl.waterloo. edu in the direc- 

tory /languages/apl/workspaces/apl2stat. 

[Received July 1993. Revised June 1994.] 
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