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Abstract Hypothesis-error (or “HE”) plots, introduced by Friendly (J Stat Softw
17(6):1–42, 2006a; J Comput Graph Stat 16:421–444, 2006b), permit the visualization
of hypothesis tests in multivariate linear models by representing hypothesis and error
matrices of sums of squares and cross-products as ellipses. This paper describes the
implementation of these methods in the heplots package for R, as well as their exten-
sion, for example from two to three dimensions and by scaling hypothesis ellipses and
ellipsoids in a natural manner relative to error.

Keywords Multivariate linear model · MANOVA · Linear hypotheses ·
Data ellipses · Statistical graphics

1 Introduction

This paper introduces the heplots package for R, which implements and extends the
methods described in Friendly (2006a,b) for visualizing hypothesis tests in multivari-
ate linear models. The paper begins with a brief description of multivariate linear
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234 J. Fox et al.

models; proceeds to explain how dispersion matrices can be represented by ellipses or
ellipsoids; and illustrates the use of the functions in the heplots package for two and
three-dimensional visualization of hypothesis tests in multivariate analysis of variance
and regression.

2 Multivariate linear models

The multivariate linear model (e.g., Timm 1975) is given by the equation Y = XB+E,
where Y is an n × m matrix of responses in which each column represents a distinct
response variable; X is an n × p model matrix of full column rank that is either fixed
or, if random, independent of the n × m matrix of errors E; and B is a p × m matrix of
regression coefficients. Under the assumption that the rows of E are independent, and
that each row is multivariately normally distributed with zero expectation and common
covariance matrix, εT

i ∼ Nm(0,�) or equivalently vec(E) ∼ Nn×m(0, In ⊗ �), the
least squares estimator̂B = (XT X)−1XT Y is the maximum-likelihood estimator of B.
Here, the 0 vectors are respectively of order n × 1 and np × 1, and ⊗ represents the
Kronecker product.

Hypothesis tests for multivariate linear models closely parallel those for univariate
linear models. Consider the linear hypothesis

H0: LB = 0 (1)

where L is a q × p hypothesis matrix of pre-specified constants and 0 is the q × m
zero matrix. We compute the m × m hypothesis sum of squares and products matrix
SSPH = ̂BT LT [L(XT X)−1LT ]−1L̂B and the m×m error sum of squares and products
matrix SSPE = ̂ET

̂E, where ̂E = Y − X̂B is the matrix of residuals. Multivariate
tests of the hypothesis in Eq. 1 are based on the s = min(q, m) nonzero latent roots
λ1 ≥ λ2 ≥ · · · ≥ λs of the matrix SSPH relative to the matrix SSPE , that is, the
values of λ for which det(SSPH − λSSPE ) = 0. These are also the ordinary latent
roots of SSPH SSP−1

E , that is, the values of λ for which det(SSPH SSP−1
E −λIm) = 0.

The corresponding latent vectors give a set of s orthogonal linear combinations of the
responses that produce maximal univariate F statistics for the hypothesis in Eq. 1. The
several commonly employed multivariate test statistics–Pillai’s trace, the Hotelling-
Lawley trace, Wilks’s Lambda, and Roy’s maximum root—are functions of the latent
roots. There is an F approximation to the null distribution of each of these test statistics.

In a univariate linear model, it is common to provide F tests for each term in the
model, summarized in an analysis-of-variance (ANOVA) table. The hypothesis sums
of squares for these tests can be expressed as differences in the error sums of squares for
nested models. For example, dropping each term in the model in turn and contrasting
the resulting residual sum of squares with that for the full model produces so-called
Type-III tests; adding terms to the model sequentially produces so-called Type-I tests;
and testing each term after all terms in the model with the exception of those to which it
is marginal produces so-called Type-II tests. Closely analogous multivariate analysis-
of-variance (MANOVA) tables can be formed similarly by taking differences in error
sum of squares and products matrices. We base the examples in Sect. 4 on Type-II
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tests because we feel that these are most generally sensible, but the methods presented
in the paper apply to any linear hypotheses.

3 Data ellipses and ellipsoids

The data ellipse, described by Dempster (1969) and Monette (1990), is a device
for visualizing the relationship between two variables, Y1 and Y2. Let D2

M (y) =
(y − y)T S−1(y − y) represent the squared Mahalanobis distance of the point y =
(y1, y2)

T from the centroid of the data y = (Y 1, Y 2)
T . The data ellipse Ec of size c is

the set of all points y with D2
M (y) less than or equal to c2:

Ec(y; S,y) ≡
{

y: (y − y)T S−1(y − y) ≤ c2
}

(2)

Here, S = ∑n
i=1(yi − y)(yi − y)T /(n − 1) is the sample covariance matrix, where yi

is the i th row of Y written as a column vector.
Many properties of the data ellipse hold regardless of the joint distribution of the

variables, but if the variables are bivariate normal, then the data ellipse represents
a contour of constant density in their joint distribution. In this case, D2

M (y) has a
large-sample χ2 distribution with 2 degrees of freedom, and so, for example, taking
c2 = χ2

2 (0.95) = 5.99 ≈ 6 encloses approximately 95 percent of the data.
The generalization of the data ellipse to more than two variables is immediate:

applying Eq. 2 to y = (y1, y2, y3)
T , for example, produces a data ellipsoid in three

dimensions. For m multivariate-normal variables, selecting c2 = χ2
m(1 − α) encloses

approximately 100(1 − α) percent of the data.

4 Hypothesis-error (HE) plots

Hypothesis-error (or HE) plots use ellipses to represent hypothesis and error sums of
squares and product matrices. The plots are implemented in two and three dimensions
in the heplots package for R.

The error ellipse is obtained by dividing SSPE by the error degrees of freedom
n − p, producing a data ellipse for the residuals. The SSPE ellipse is also centered
at the grand means, allowing individual factor means to be shown on the same plot,
facilitating interpretation. Similarly, the hypothesis ellipse is formed from the sum-
of-squares-and-products matrix for the hypothesis, SSPH . We consider two scalings
of the hypothesis ellipse:

1. “Evidence-based” scaling, the default, in which the hypothesis ellipse protrudes
from the error ellipse if and only if the hypothesis can be rejected by the Roy
maximum-root criterion. The directions in which the hypothesis ellipse exceed
the error ellipse are informative about the responses or their linear combinations
that depart significantly from H0. This scaling is produced by dividing SSPH by
λα(n − p) , where λα is the critical value of Roy’s statistic for a test at level α.
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2. Scaling by “effect size,” where the hypothesis ellipse is put on the same scale as the
error ellipse, and approximately represents the data ellipse of fitted values under
the alternative hypothesis. Here, SSPH is simply divided by n − p.

All of this extends straightforwardly to the three dimensional case.

4.1 One-way MANOVA: Romano-British Pottery

Tubb et al. (1980) used atomic absorption spectrophotometry to analyze data on the
element composition of 26 samples of Romano-British pottery found at four different
kiln sites in Britain with a view to determining if the chemical content of aluminium,
iron, magnesium, calcium and sodium could differentiate those sites; see also Hand
et al. (1994, 252) . If so, the chemical content of pottery of unknown origin might be
used for classification. The data thus comprise a one-way MANOVA design with four
groups and five response variables.

The data for this example are in the data frame Pottery in the car package:

> library(car)
> Pottery

Site Al Fe Mg Ca Na
1 Llanedyrn 14.4 7.00 4.30 0.15 0.51
2 Llanedyrn 13.8 7.08 3.43 0.12 0.17
3 Llanedyrn 14.6 7.09 3.88 0.13 0.20
. . .
25 AshleyRails 14.8 2.74 0.67 0.03 0.05
26 AshleyRails 19.1 1.64 0.60 0.10 0.03

> table(Pottery$Site)

AshleyRails Caldicot IsleThorns Llanedyrn
5 2 5 14

The ellipses in the output (. . .) represent elided lines.
In R, multivariate linear models are fit by the lm function, returning an object of

class mlm. Here, we fit a one-way MANOVA model to the Pottery data. The print
method for the object returned by the Anova function gives a brief display of the
multivariate test for Site, using the Pillai trace statistic by default. A more detailed
display (not shown), including the SSPH and SSPE matrices, all four multivariate
tests, and univariate tests for each response, is provided by the summary method for
Anova.mlm objects:

> pottery.mod <- lm(cbind(Al, Fe, Mg, Ca, Na) ˜ Site, data=Pottery)
> Anova (pottery.mod)

Type II MANOVA Tests: Pillai test statistic
df test stat approx F num df den df Pr(>F)

Site 3 1.5539 4.2984 15 60 2.413e-05 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fig. 1 HE plot for pottery data, showing iron and aluminum. H (i.e., SSPH ) matrices solid lines; E
(i.e., SSPE ) matrix dashed lines

There is, therefore, strong evidence against the null hypothesis of no differences
in mean vectors across sites. In this instance, we get the same test from the anova
function in the standard stats package, because (as mentioned) for this one-factor
design, the sequential test provided by anova is the same as the Type-II test provided
by default by Anova (but objects returned by anova do not contain the information
necessary for constructing HE plots).

For two response variables, we can use heplot to visualize the (co)variation
due to the Site hypothesis—(co)variation of the group means—relative to error—
(co)variation of the residuals. As illustrated below, we can also visualize the results
of linear hypotheses related to subsets of the parameters.

> # Figure 1
> heplot(pottery.mod)
> # add a 2 df hypothesis
> heplot(pottery.mod, terms=FALSE, add=TRUE, col="blue",
+ hypotheses=list("Caldicot & Isle Thorns" = c("SiteCaldicot = 0", "SiteIsleThorns=0")))
> # add two 1 df hypotheses
> heplot(pottery.mod, terms=FALSE, add=TRUE, col="magenta",
+ hypotheses=list("C-A" = "SiteCaldicot", "I-A" = "SiteIsleThorns"))

Figure 1 shows the plot of the SSPH and SSPE matrices for two of the variables,
iron and aluminum, and the means for the four sites. In addition, it shows the SSPH

matrices for linear hypotheses related to Caldicot and IsleThorns, where Ashley Rails
is the baseline category. It is clear that the sites differ primarily in terms of a contrast
between Caldicot and Llanedryn versus Ashley Rails and Isle Thorns, and that the
means on these two chemical components are negatively related, while the pooled
within group scatter shows a weak positive relation.

Figure 2 illustrates the difference between effect-size scaling and (the default)
evidence-based scaling of SSPH relative to SSPE , produced using
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Fig. 2 HE plot for pottery data: effect scaling (dark green) versus evidence scaling (light green)

> # Figure 2: compare evidence and effect scaling
> heplot(pottery.mod)
> heplot(pottery.mod, add=TRUE, size="effect", col="darkgreen")

The evidence-scaled hypothesis ellipse for this one-way MANOVA model is the data
ellipse for the group means weighted by group sample sizes.

Of course, other pairs of response variables can also be displayed (e.g., heplot
(pottery.mod,variables=c("Mg", "Fe")), or subsets of three response
variables can be examined (by heplot3d(pottery.mod, variables=
c(...))—see below). Alternatively, the variation across sites on all chemical com-
ponents may be seen in the pairwise 2D projections of the HE plot matrix in Fig. 3. This
graph was produced by the pairs method for mlm objects, reordering the variables
to produce a more coherent display (Friendly and Kwan 2003):

> # Figure 3
> pairs(pottery.mod, variables=c("Mg","Fe","Ca","Na","Al"))

Quite a lot may be read directly from this plot. For example: the site means for
magnesium (Mg) and iron (Fe) are nearly perfectly correlated, and have the same
pattern with all other variables, while all mean differences for aluminium (Al) are
in the opposite direction. The relations for calcium (Ca) and sodium (Na) also differ
somewhat from those for magnesium and iron in that Caldicot samples are quite high
on calcium, while Llanedryn is high on sodium.
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Fig. 3 pairs HE plot matrix for the pottery data

4.2 Two-way MANOVA: plastic film data

HE plots are particularly instructive when there are multiple sources of hypothesis
variation to be tested in a multivariate linear model. The simplest case is for a 2 × 2
MANOVA, where the main effects and interaction each have 1 df (and so, the SSPH

ellipses or ellipsoids collapse to lines), but where the response variable space is 2
or more dimensional. To illustrate, we use textbook data from Johnson and Wichern
(1992, 266) on an experiment conducted to determine the optimum conditions for
extruding plastic film. Three responses (tear resistance, film gloss, and opacity) were
measured in relation to two factors: rate of extrusion (Low/High) and amount of an
additive (Low/High). The data are in the heplots package:

> library(heplots)
> Plastic
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Fig. 4 HE plot for tear and gloss in the plastic-film data. Thick lines evidence scaling; thin lines effect
scaling

tear gloss opacity rate additive
1 6.5 9.5 4.4 Low Low
2 6.2 9.9 6.4 Low Low
3 5.8 9.6 3.0 Low Low
. . .
19 7.5 10.1 2.7 High High
20 7.6 9.2 1.9 High High

We fit the two-way MANOVA model and display the Anova results, using Roy’s
maximum root test. Both main effects are significant, but their interaction is not:
> plastic.mod <- lm(cbind(tear, gloss, opacity) ˜ rate*additive, data=Plastic)
> Anova(plastic.mod, test.statistic="Roy")

Type II MANOVA Tests: Roy test statistic
df test stat approx F num df den df Pr(>F)

rate 1 1.6188 7.5543 3 14 0.003034 **
additive 1 0.9119 4.2556 3 14 0.024745 *
rate:additive 1 0.2868 1.3385 3 14 0.301782
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Again, we get the same tests from anova, this time because the data are balanced,
with five observations per cell (so that sequential and Type-II tests coincide).

In Fig. 4, we show the HE plot for the first two response variables (tear and
gloss). In this plot, we overlay the size="evidence" and size="effect"
scalings, varying line width.
> # Figure 4: Compare evidence and effect scaling
> heplot(plastic.mod, size="evidence")
> heplot(plastic.mod, size="effect", add=TRUE, lwd=8, term.labels=FALSE)
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Fig. 5 heplot3d plot for the plastic-film data

Note that, in this view, the effect for additive does not extend outside the error
ellipse. Indeed, the effect of additive, while significant in the multivariate test,
does not quite protrude beyond the SSPE ellipse in any of the 2D marginal projections
of the multidimensional ellipsoids (as revealed, e.g., in a pairs plot, not shown).
Using heplot3d, however, we can easily find 3D views of all effects that show the
significant effects of both additive and rate, as in Fig. 5. These views correspond
to linear combinations of the responses.

> # Figure 5
> heplot3d(plastic.mod)

The view in Fig. 5 facilitates interpretation of the multivariate factor effects. For
example, for the rate effect, higher rate is associated with greater opacity and greater
tear but lower gloss.

4.3 Multivariate multiple regression and MANCOVA: Rohwer data

The ideas behind HE plots extend naturally to multivariate multiple regression and
multivariate analysis of covariance. In multivariate multiple regression, the X matrix
contains quantitative predictors, while in multivariate analysis of covariance (MAN-
COVA), there is a mixture of factors and quantitative predictors (covariates). To illus-
trate, we use data from a study by Rohwer (given in Timm 1975: Ex. 4.3, 4.7, and 4.23)
on kindergarten children, designed to determine how well a set of paired-associate (PA)
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tasks predicted performance on the Peabody Picture Vocabulary test (PPVT), a student
achievement test (SAT), and the Raven Progressive matrices test (Raven). The PA
tasks varied in how the stimuli were presented, and are called named (n), still (s),
named still (ns), named action (na), and sentence still (ss). Two groups were tested:
a group of n = 37 children from a low socioeconomic status (SES) school, and a
group of n = 32 high SES children from an upper-class, white residential school. The
data are in the data frame Rohwer in the heplots package:

> Rohwer

group SES SAT PPVT Raven n s ns na ss
1 1 Lo 49 48 8 1 2 6 12 16
2 1 Lo 47 76 13 5 14 14 30 27
3 1 Lo 11 40 13 0 10 21 16 16
. . .
68 2 Hi 98 74 15 2 6 14 25 17
69 2 Hi 50 78 19 5 10 18 27 26

Initially (and optimistically), we fit the MANCOVA model that allows different
means for the two SES groups on the responses, but constrains the slopes for the PA
covariates to be equal.

> rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ˜ SES + n + s + ns + na + ss,
+ data=Rohwer)
> Anova(rohwer.mod)

Type II MANOVA Tests: Pillai test statistic
df test stat approx F num df den df Pr(>F)

SES 1 0.3785 12.1818 3 60 2.507e-06 ***
n 1 0.0403 0.8400 3 60 0.477330
s 1 0.0927 2.0437 3 60 0.117307
ns 1 0.1928 4.7779 3 60 0.004729 **
na 1 0.2313 6.0194 3 60 0.001181 **
ss 1 0.0499 1.0504 3 60 0.376988
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

This multivariate linear model is of interest because, although the multivariate
tests for two of the covariates (ns and na) are highly significant, univariate multiple
regression tests for the separate responses [from summary(rohwer.mod)] are
relatively weak. We can test the 5 df hypothesis that all covariates have null effects
for all responses as a linear hypothesis (suppressing display of the error and hypothesis
SSP matrices),

> Regr <- linear.hypothesis(rohwer.mod, diag(7)[3:7,])
> print(Regr, digits=5, SSP=FALSE)

Multivariate Tests:
df test stat approx F num df den df Pr(>F)

Pillai 5.00 0.6658 3.5369 15.00 186.00 2.309e-05 ***
Wilks 5.00 0.4418 3.8118 15.00 166.03 8.275e-06 ***
Hotelling-Lawley 5.00 1.0309 4.0321 15.00 176.00 2.787e-06 ***
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Roy 5.00 0.7574 9.3924 5.00 62.00 1.062e-06 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

As explained, in the MANCOVA model rohwer.mod we have assumed homo-
geneity of slopes for the predictors, and the test of SES relies on this assumption. We
can test this as follows, adding interactions of SES with each of the covariates:

> rohwer.mod2 <- lm(cbind(SAT, PPVT, Raven) ˜ SES * (n + s + ns + na + ss),
+ data=Rohwer)
> Anova(rohwer.mod2)

Type II MANOVA Tests: Pillai test statistic
df test stat approx F num df den df Pr(>F)

SES 1 0.3912 11.7822 3 55 4.55e-06 ***
n 1 0.0790 1.5727 3 55 0.2063751
s 1 0.1252 2.6248 3 55 0.0595192 .
ns 1 0.2541 6.2461 3 55 0.0009995 ***
na 1 0.3066 8.1077 3 55 0.0001459 ***
ss 1 0.0602 1.1738 3 55 0.3281285
SES:n 1 0.0723 1.4290 3 55 0.2441738
SES:s 1 0.0994 2.0240 3 55 0.1211729
SES:ns 1 0.1176 2.4425 3 55 0.0738258 .
SES:na 1 0.1480 3.1850 3 55 0.0308108 *
SES:ss 1 0.0573 1.1150 3 55 0.3509357
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

It appears from the above that there is only weak evidence of unequal slopes from
the separate SES: terms. The evidence for heterogeneity is stronger, however, when
these terms are tested collectively using the linear.hypothesis function:

> (coefs <- rownames(coef(rohwer.mod2)))

[1] "(Intercept)" "SESLo" "n" "s" "ns"
[6] "na" "ss" "SESLo:n" "SESLo:s" "SESLo:ns"
[11] "SESLo:na" "SESLo:ss"

> print(linear.hypothesis(rohwer.mod2, coefs[grep(":", coefs)]), SSP=FALSE)

Multivariate Tests:
df test stat approx F num df den df Pr(>F)

Pillai 5.0000 0.417938 1.845226 15.0000 171.0000 0.0320861 *
Wilks 5.0000 0.623582 1.893613 15.0000 152.2322 0.0276949 *
Hotelling-Lawley 5.0000 0.538651 1.927175 15.0000 161.0000 0.0239619 *
Roy 5.0000 0.384649 4.384997 5.0000 57.0000 0.0019053 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

2D views of the additive MANCOVA model that we fit to the Rohwer data and the
overall test for all covariates are provided in Fig. 6, produced using pairs as follows:

> # Figure 6
> colors <- c("red", "blue", rep("black",5), "darkgrey")
> pairs(rohwer.mod, col=colors,
+ hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")))
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Fig. 6 HE pairs plot for the Rohwer data, MANCOVA model rohwer.mod.

It may be seen that the predicted values for all three responses are positively corre-
lated, and that the hypothesized effects of the covariates span the full three dimensions
of the responses. As well, the High SES group is higher on all responses than the Low
SES group.

We also fit a model to the Rohwer data relaxing the assumption of equal slopes—that
is, permitting interactions between the covariates and SES. There are several options
for visualization: Either we can fit and display separate models for the High and Low
SES groups (which also allows the within-groups error-covariance matrices to differ);
we can fit a combined model with separate intercept and slopes for the two groups,
which assumes a common within-groups error-covariance matrix; or we can try to
visualize the slope differences in the heterogeneous-slopes model rohwer.mod2.
Choosing the last option, we examine the HE pairs plot in Fig. 7. To simplify this
display, we show the hypothesis ellipses for the overall effects of the PA tests in the
baseline high-SES group, and a single combined ellipse for all the SESLo: interaction
terms that we tested previously, representing differences in slopes between the low
and high-SES groups. Because SES is “treatment-coded” in this model, the ellipse for
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Fig. 7 pairsplot for the heterogeneous regression model rohwer.mod2. The ellipses labeled “Slopes”
show the covariation of all terms for slope differences between the High and Low SES groups

each covariate represents the hypothesis that the slopes for that covariate are zero in
the high-SES baseline category.

> # Figure 7
> pairs(rohwer.mod2, col=c(colors, "brown"),
+ terms=c("SES", "n", "s", "ns", "na", "ss"),
+ hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss"),
+ "Slopes" = coefs[grep(":", coefs)]))

Comparing Figs. 6 and 7 for the homogeneous and heterogenous-slopes models, it
may be seen that most of the covariates have ellipses of similar size and orientation,
reflecting similar evidence against the null hypotheses in the baseline high-SES group
and for both groups in the common-slopes model; so too does the effect of SES,
with the High SES group performing better on all measures. The error covariation is
noticeably smaller in some of the panels of Fig. 7 (those for SAT and PPVT), reflecting
additional variation accounted for by differences in slopes.

123



246 J. Fox et al.

5 Discussion

As we hope the previous examples illustrate, HE plots provide a remarkably simple, yet
powerful visual tool for understanding the nature of effects expressed in multivariate
test statistics for the multivariate linear model. We can visualize the size, dimensional-
ity and orientation of hypothesis and error variation for two or more response variables
by plotting what are essentially data ellipses (or ellipsoids) for the fitted values (from
SSPH ) versus residuals (from SSPE ) corresponding to any model term. This is pre-
cisely the information that is summarized in multivariate test statistics, but the HE
plot exposes the pattern of model effects in relation to the response variables. As we
described, Roy’s test provides a particularly convenient “evidence” scaling that yields
a visual test of significance.

An attractive feature of our implementation in the heplots package is its generality.
The method applies to any collection of terms—factors, covariates, interactions and
so forth—in any multivariate linear model fit with lm. In addition, we have found it
useful to superimpose hypothesis ellipses corresponding to general linear hypotheses,
such as the contrasts shown in Fig. 1 and the composite tests for all regressors (“Regr”)
and all slope differences (“Slopes”) shown in Figs. 6 and 7. For three responses, we
can visualize these effects in 3D with heplot3d; for three or more responses, we
provide a scatterplot matrix analog with a pairs method for mlm objects.
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