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Part 3: Mosaic displays and loglinear models
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Topics:

Mosaic displays
loglinear models for n-way tables
Visualizing loglinear models: SAS & R
Models for square and structured tables
Larger tables
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n-way tables Mosaic displays: Basic ideas

Mosaic displays: Basic ideas

Hartigan and Kleiner (1981), Friendly (1994, 1999)

Area-proportional display of
frequencies in an n-way table

Tiles (cells): recursive splits of a
unit square—

V1: width ∼ marginal
frequencies, ni++

V2: height ∼ relative frequencies
|V1, nij+/ni++

V3: width ∼ relative frequencies
| (V1, V2), nijk/nij+
· · ·

⇒ area ∼ cell frequency, nijk
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n-way tables Mosaic displays: Basic ideas

Mosaic displays: Basic ideas

Independence: Two-way table

Expected frequencies:

m̂ij =
ni+n+j

n++
= n++row %col %

⇒ rows & columns align when
variables are independent
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n-way tables Mosaic displays: Basic ideas

Mosaic displays: Residuals & shading

Pearson residuals:

dij =
nij − m̂ij√

m̂ij

Pearson χ2 = ΣΣd2
ij = ΣΣ

(nij−m̂ij )
2

m̂ij

Other residuals: deviance (LR),
Freeman-Tukey (FT), adjusted
(ADJ), ...

Shading:

Sign: − negative in red; +
positive in blue
Magnitude: intensity of shading:
|dij | > 0, 2, 4, . . .

⇒ Independence: rows align, or
cells are empty!
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n-way tables Loglinear models: Overview

Loglinear models: Perspectives I

Loglinear approach

Loglinear models were first developed as an analog of classical ANOVA models,
where multiplicative relations (under independence) are re-expressed in additive
form as models for log(frequency).

log mij = µ+ λAi + λBj ≡ [A][B] ≡∼ A + B

This expresses the model of independence for a two-way table (no A*B
association)
The notations [A][B] ≡∼ A + B are shorthands
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n-way tables Loglinear models: Overview

Loglinear models: Perspectives II

GLM approach

More generally, loglinear models are also generalized linear models (GLMs) for
log(frequency), with a Poisson distribution for the cell counts.

log m = Xβ

This looks just like the general linear ANOVA, regression model, but for log
frequency

This approach allows quantitative predictors and special ways of treating
ordinal factors
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n-way tables Loglinear models: Overview

Loglinear models: Perspectives III

Logit models

When one table variable is a binary response, a logit model for that response is
equivalent to a loglinearmodel (as discussed in Part 4).

log(m1jk/m2jk) = α + βB
j + βC

k ≡ [AB][AC ][BC ]

log(m1jk/m2jk) represents the log odds of response category 1 vs. 2

The model formula includes only terms for the effects on A of variables B and
C

The equivalent loglinearmodel is [AB] [AC] [BC]

The logit model assumes [BC] association, and [AB] → βB
j , [AC] → βC

k
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n-way tables Loglinear models: Overview

Loglinear models: Overview

Two-way tables: Loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total size n
over the IJ cells of a two-way I × J contingency table, with cell frequencies nij ,
and cell probabilities πij = nij/n.

The table variables are statistically independent when the cell (joint)
probability equals the product of the marginal probabilities,
Pr(A = i & B = j) = Pr(A = i)× Pr(B = j), or,

πij = πi+π+j .

An equivalent model in terms of expected frequencies, mij = nπij is

mij = (1/n) mi+ m+j .

This multiplicative model can be expressed in additive form as a model for
log mij ,

log mij = − log n + log mi+ + log m+j . (1)
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n-way tables Loglinear models: Overview

Loglinear models: Overview

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

log mij = µ+ λAi + λBj , (2)

µ is the grand mean of log mij

the parameters λAi and λBj express the marginal frequencies of variables A
and B — “main effects”

typically defined so that
∑

i λ
A
i =

∑
j λ

B
j = 0 as in ANOVA
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n-way tables Loglinear models: Overview

Loglinear models: Overview

Saturated model

Dependence between the table variables is expressed by adding association
parameters, λABij , giving the saturated model ,

log mij = µ+ λAi + λBj + λABij ≡ [AB] ≡∼ A ∗ B . (3)

The saturated model fits the table perfectly (m̂ij = nij): there are as many
parameters as cell frequencies. Residual df = 0.
A global test for association tests H0 : λAB

ij = 0.

If reject H0, which λABij 6= 0 ?

For ordinal variables, the λABij may be structured more simply, giving tests for
ordinal association.
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n-way tables Loglinear models: Overview

Example: Independence

Generate a table of Education by Party preference, strictly independent

educ <- c(50, 100, 50) # row marginal frequencies
names(educ) <- c("Low", "Med", "High")

party <- c(20, 50, 30) # col marginal frequencies
names(party) <- c("NDP", "Liberal", "Cons")

table <- outer(educ, party) / sum(party) # row x col / n
names(dimnames(table)) <- c("Education", "Party")
table

## Party
## Education NDP Liberal Cons
## Low 10 25 15
## Med 20 50 30
## High 10 25 15
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n-way tables Loglinear models: Overview

Example: Independence
All row (and column) proportions are the same:

prop.table(table,1)

## Party
## Education NDP Liberal Cons
## Low 0.2 0.5 0.3
## Med 0.2 0.5 0.3
## High 0.2 0.5 0.3

All statistics are 0:

vcd::assocstats(table)

## X^2 df P(> X^2)
## Likelihood Ratio 0 4 1
## Pearson 0 4 1
##
## Phi-Coefficient : 0
## Contingency Coeff.: 0
## Cramer's V : 0
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n-way tables Loglinear models: Overview

Mosaic plot shows equal row and column proportions:

library(vcd)
mosaic(table, shade=TRUE, legend=FALSE)
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n-way tables Loglinear models: Overview

Two-way tables: GLM approach

In the GLM approach, the vector of cell frequencies, n = {nij} is specified to have
a Poisson distribution with means m = {mij} given by

log m = Xβ

X is a known design (model) matrix, expressing the table factors

β is a column vector containing the unknown λ parameters.

This is the same as the familiar matrix formulation of ANOVA/regression,
except that

The response, log m makes multiplicative relations additive
The distribution is taken as Poisson rather than Gaussian (normal)
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n-way tables Loglinear models: Overview

Example: 2 x 2 table

For a 2× 2 table, the saturated model (3) with the usual zero-sum constraints can
be represented as

log


m11

m12

m21

m22

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




µ
λA1
λB1
λAB11


only the linearly independent parameters are represented. λA2 = −λA1 , because
λA1 + λA2 = 0, and so forth.
association is represented by the parameter λAB11
can show that λAB11 = 1

4 log(θ) (log odds ratio)
Advantages of the GLM formulation: easier to express models with ordinal or
quantitative variables, special terms, etc. Can also allow for over-dispersion.
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n-way tables Loglinear models: Overview

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G 2,

G 2 = 2
∑
i

ni log

(
ni

m̂i

)
, (4)

or the Pearson X 2,

X 2 =
∑
i

(ni − m̂i )
2

m̂i
, (5)

with degrees of freedom df = # cells - # estimated parameters.

E.g., for the model of independence, [A][B], df =
IJ − [(I − 1)− (J − 1)] = (I − 1)(J − 1)
The terms summed in (4) and (5) are the squared cell residuals
Other measures of balance goodness of fit against parsimony, e.g., Akaike’s
Information Criterion (smaller is better)

AIC = G 2 − 2df or AIC = G 2 + 2 # parameters
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Three-way tables Saturated model

Three-way tables

Saturated model

For a 3-way table, of size I × J × K for variables A,B,C , the saturated loglinear
model includes associations between all pairs of variables, as well as a 3-way
association term, λABCijk

log mijk = µ+ λAi + λBj + λCk

+ λABij + λACik + λBCjk + λABCijk .
(6)

One-way terms (λAi , λ
B
j , λ

C
k ): differences in the marginal frequencies of the

table variables.
Two-way terms (λABij , λACik , λBCjk ) pertain to the partial association for each
pair of variables, controlling for the remaining variable.
The three-way term, λABCijk allows the partial association between any pair of
variables to vary over the categories of the third variable.
Fits perfectly, but doesn’t explain anything, so we hope for a simpler model!
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Three-way tables Reduced models

Three-way tables: Reduced models

Reduced models

Loglinearmodels are usually hierarchical: a high-order term, such as λABCijk →
all low-order relatives are automatically included.

Thus, a short-hand notation for a loglinear model lists only the high-order
terms,

i.e., the saturated model (6) ≡ [ABC ], and implies all two-way and one-way
terms

The usual goal is to fit the smallest model (fewest high-order terms) that is
sufficient to explain/describe the observed frequencies.

This is similar to ANOVA/regression models with all possible interactions
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Three-way tables Reduced models

Three-way tables: Reduced models

Reduced models

For a 3-way table there are a variety of models between the mutual
independence model, [A][B][C], and the saturated model, [ABC]
Each such model has an independence interpretation: A ⊥ B means an
hypothesis that A is independent of B.

Table: Log-linear Models for Three-Way Tables

Model Model symbol Interpretation

Mutual independence [A][B][C ] A ⊥ B ⊥ C
Joint independence [AB][C ] (A B) ⊥ C
Conditional independence [AC ][BC ] (A ⊥ B) |C
All two-way associations [AB][AC ][BC ] homogeneous assoc.
Saturated model [ABC ] interaction
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Three-way tables Reduced models

Three-way tables: Model types

Joint independence: (AB) ⊥ C , allows A*B association, but asserts no
A*C and B*C associations

[AB][C ] ≡ log mijk = µ+ λAi + λBj + λCk + λABij

Conditional independence: A ⊥ B, controlling for C

[AC ][BC ] ≡ log mijk = µ+ λAi + λBj + λCk + λACik + λBCjk

Homogeneous association: All two-way, but each two-way is the same over
the other factor

[AB][AC ][BC ] ≡ log mijk = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk
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Three-way tables GOF & ANOVA tests

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the
likelihood ratio G 2, or the Pearson X 2,

G 2 = 2
∑
i

ni log

(
ni

m̂i

)
X 2 =

∑
i

(ni − m̂i )
2

m̂i
,

with residual degrees of freedom ν = # cells − # estimated parameters.

These measure the lack of fit of a given model— a large value 7→ a poor
model
Both are distributed as χ2(ν) (in large samples: all m̂i > 5)
E(χ2) = ν, so G 2/ν (or X 2/ν) measures lack of fit per degree of freedom
(overdispersion)
But: how to compare or test competing models?
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Three-way tables GOF & ANOVA tests

Nested models and ANOVA-type tests

Nested models

Two models, M1 and M2 are nested when one (say, M2) is a special case of the
other

Model M2 (with ν2 df) fits a subset of the parameters of M1 (with ν1 df)
M2 is more restrictive — cannot fit better than M1: G 2(M2) ≥ G 2(M1)
The least restrictive model is the saturated model [ABC. . . ] with G 2 = 0 and
ν = 0

Therefore, we can test the difference in G 2 as a specific test of the added
restrictions in M2 compared to M1. This test has has a χ2 distribution with df =
ν2 − ν1.

∆G 2 ≡ G 2(M2 |M1) = G 2(M2)− G 2(M1) (7)

= 2
∑

ni log(m̂i1/m̂i2)
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Three-way tables GOF & ANOVA tests

Example: Berkeley admissions data

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender the
following models form a nested chain

[A][D][G ] ⊂ [A][DG ] ⊂ [AD][AG ][DG ] ⊂ [ADG ]

Table: Hierarchical G 2 tests for loglinear models fit to the UC Berkeley data

Type LLM terms G 2 df ∆(G 2) ∆(df ) Pr(> ∆(G 2))

Mutual ind [A][D][G] 2097.67 16
Joint [A][DG] 877.06 11 1220.62 5 0.0000
All 2-way [AD][AG][DG] 20.20 5 1128.70 5 0.0000
Saturated [ADG] 0.0 0 20.20 5 0.0011

Only testing decrease in G 2 from one model to the next
Here, each model is significantly better than the previous
Joint vs. all 2-way: does Admit depend on Dept and/or Gender?
Absolute fit of the all 2-way model is not terrible. Investigate further!
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Fitting loglinear models

Fitting loglinear models: SAS

SAS

PROC CATMOD
1 %include catdata(berkeley);
2 proc catmod order=data data=berkeley;
3 format dept dept. admit admit.;
4 weight freq; /* data in freq. form */
5 model dept*gender*admit=_response_ ;
6 loglin admit|dept|gender @2 / title='Model (AD,AG,DG)'; run;
7 loglin admit|dept dept|gender / title='Model (AD,DG)'; run;

PROC GENMOD
1 proc genmod data=berkeley;
2 class dept gender admit;
3 model freq = dept|gender dept|admit / dist=poisson;
4 run;

mosaic macro usually fits loglin models internally and displays results
You can also use PROC GENMOD for a more general model, and display the
result with the mosaic macro.
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Fitting loglinear models

Fitting loglinear models in R

loglm() - data in contingency table form (MASS package)

1 data(UCBAdmissions)
2 ## conditional independence (AD, DG) in Berkeley data
3 mod.1 <- loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)
4 ## all two-way model (AD, DG, AG)
5 mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)

glm() - data in frequency form

1 berkeley <- as.data.frame(UCBAdmissions)
2 mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
3 family='poisson')

loglm() simpler for nominal variables
glm() allows a wider class of models and quantitative predictors (covariates)
gnm() fits models for structured association and generalized non-linear
models
vcdExtra package provides visualizations for all.
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Fitting loglinear models

Example: Berkeley admission data

Fit the model of mutual independence using loglm()

data("UCBAdmissions")
library(MASS)
berk.loglm0 <- loglm(~ Dept + Gender + Admit, data=UCBAdmissions)
berk.loglm0

## Call:
## loglm(formula = ~Dept + Gender + Admit, data = UCBAdmissions)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 2097.7 16 0
## Pearson 2000.3 16 0
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Fitting loglinear models

Example: Berkeley admission data

Fit other models with loglm()

# conditional independence [AD] [AG]
berk.loglm1 <- loglm(~ Admit * (Dept + Gender), data=UCBAdmissions)

# joint independence [A] [DG]
berk.loglm2 <- loglm(~ Admit + (Dept * Gender), data=UCBAdmissions)
berk.loglm2

## Call:
## loglm(formula = ~Admit + (Dept * Gender), data = UCBAdmissions)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 877.06 11 0
## Pearson 797.70 11 0

# all two-way model [AD] [AG] [DG]
berk.loglm3 <-loglm(~(Admit+Dept+Gender)^2, data=UCBAdmissions)
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Fitting loglinear models

Example: Berkeley admission data

Compare nested models with anova()

anova(berk.loglm0, berk.loglm2, berk.loglm3, test="Chisq")

## LR tests for hierarchical log-linear models
##
## Model 1:
## ~Dept + Gender + Admit
## Model 2:
## ~Admit + (Dept * Gender)
## Model 3:
## ~(Admit + Dept + Gender)^2
##
## Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
## Model 1 2097.671 16
## Model 2 877.056 11 1220.615 5 0.00000
## Model 3 20.204 5 856.852 6 0.00000
## Saturated 0.000 0 20.204 5 0.00114
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Fitting loglinear models

Example: Berkeley admission data
LRStats() in vcdExtra gives one line summaries of a collection of models

LRstats(berk.loglm0, berk.loglm1, berk.loglm2, berk.loglm3)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## berk.loglm0 2273 2282 2098 16 <2e-16 ***
## berk.loglm1 1336 1352 1149 10 <2e-16 ***
## berk.loglm2 1062 1077 877 11 <2e-16 ***
## berk.loglm3 217 240 20 5 0.0011 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC and BIC are GOF measures adjusted for model parsimony
Not not significance tests, but smaller is better
Also apply to non-nested models

AIC = G 2 + 2× # parameters

BIC = G 2 + 2 log(n)× # parameters
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Fitting loglinear models Mosaic displays

Mosaic displays: Predictor variables
Berkeley data: Departments × Gender (ignoring Admit):

Did departments differ in the total number of applicants?

Did men and women apply differentially to departments?
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Male    Female  

Model: (Dept)(Gender)

Model [Dept] [Gender]: G 2
(5) =

1220.6.
Note: Departments ordered A–F by
overall rate of admission.
Men more likely to apply to
departments A,B; women more
likely in depts C–F
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Fitting loglinear models Mosaic displays

Mosaic displays for multiway tables

Generalizes to n-way tables: divide cells recursively

Can fit any log-linear model (e.g., 2-way, 3-way, . . . ),

For a 3-way table: [A][B][C], [AB][C], [AB][AC], . . . , [ABC]

Each mosaics shows:

DATA (size of tiles)
(some) marginal frequencies (spacing → visual grouping)
RESIDUALS (shading) — what associations have been omitted?

Visual fitting:

Pattern of lack-of-fit (residuals) →“better” model— smaller residuals
“cleaning the mosaic”→“better” model— empty cells
best done interactively!
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Fitting loglinear models Mosaic displays

Joint independence, [DG][A] (null model, Admit as response) [G 2
(11) = 877.1]:
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Fitting loglinear models Mosaic displays

Mosaic displays for multiway tables

Conditional independence, [AD] [DG]:
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Model: (DeptGender)(DeptAdmit)

E.g., Add [Admit Dept]
association → Conditional
independence:

Fits poorly: (G 2
(6) = 21.74)

But, only in Department A!

GLM approach allows fitting a
special term for Dept. A

Note: These displays use
standardized residuals: better
statistical properties.
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Fitting loglinear models Mosaic displays

Other variations: Double decker plots
Visualize dependence of one categorical (typically binary) variable on
predictors
Formally: mosaic plots with vertical splits for all predictor dimensions,
highlighting the response by shading

Dept
Gender

A
Male Female

B
Male Female

C
Male Female

D
Male Female

E
MaleFemale

F
Male Female

Admitted

Rejected

Admit
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Fitting loglinear models Sequential plots and models

Sequential plots and models

Mosaic for an n-way table → hierarchical decomposition of association

Joint cell probabilities are decomposed as

pijk`··· =

{v1v2}︷ ︸︸ ︷
pi × pj|i × pk|ij︸ ︷︷ ︸

{v1v2v3}

× p`|ijk × · · · × pn|ijk···

First 2 terms → mosaic for v1 and v2
First 3 terms → mosaic for v1, v2 and v3
· · ·

Roughly analogous to sequential fitting in regression: X1, X2|X1, X3|X1X2,
· · ·
The order of variables matters for interpretation
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Fitting loglinear models Sequential plots and models

Sequential plots and models

Sequential models of joint independence → additive decomposition of the total
association, G 2

[v1][v2]...[vp ]
(mutual independence),

G 2
[v1][v2]...[vp ]

= G 2
[v1][v2]

+ G 2
[v1v2][v3]

+ G 2
[v1v2v3][v4]

+ · · ·+ G 2
[v1...vp−1][vp ]

e.g., for Hair Eye color data

Model Model symbol df G 2

Marginal [Hair] [Eye] 9 146.44
Joint [Hair, Eye] [Sex] 15 19.86
Mutual [Hair] [Eye] [Sex] 24 166.30
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Fitting loglinear models Sequential plots and models

Sequential plots and models: Example
Hair color x Eye color marginal table (ignoring Sex)
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(Hair)(Eye), G2 (9) = 146.44
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Fitting loglinear models Sequential plots and models

Sequential plots and models: Example
3-way table, Joint Independence Model [Hair Eye] [Sex]

Black   Brown   Red     Blond   
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M       F       

(HairEye)(Sex), G2 (15) = 19.86
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Fitting loglinear models Sequential plots and models

Sequential plots and models: Example
3-way table, Mutual Independence Model [Hair] [Eye] [Sex]
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(Hair)(Eye)(Sex), G2 (24) = 166.30
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Fitting loglinear models Sequential plots and models

Sequential plots and models: Example

Marginal
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(Hair)(Eye), G2 (9) = 146.44

[Hair] [Eye]
G 2
(9) = 146.44

+

Joint
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(HairEye)(Sex), G2 (15) = 19.86

[Hair Eye] [Sex]
G 2
(15) = 19.86

=

Total
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(Hair)(Eye)(Sex), G2 (24) = 166.30

[Hair] [Eye] [Sex]
G 2
(24) = 166.30
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Fitting loglinear models Mosaic matrices

Mosaic matrices
Analog of scatterplot matrix for categorical data (Friendly, 1999)

Shows all p(p − 1) pairwise views in a coherent display
Each pairwise mosaic shows bivariate (marginal) relation
Fit: marginal independence
Residuals: show marginal associations
Direct visualization of the “Burt” matrix analyzed in MCA for p categorical
variables
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Fitting loglinear models Mosaic matrices

Hair, Eye, Sex data:
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Fitting loglinear models Mosaic matrices

Berkeley data:
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Fitting loglinear models Partial association

Partial association, Partial mosaics
Stratified analysis:

How does the association between two (or more) variables vary over levels of
other variables?
Mosaic plots for the main variables show partial association at each level of
the other variables.
E.g., Hair color, Eye color BY Sex ↔ TABLES sex * hair * eye;
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Fitting loglinear models Partial association

Partial association, Partial mosaics

Stratified analysis: conditional decomposition of G 2

Fit models of partial (conditional) independence, A ⊥ B |Ck at each level of
(controlling for) C .
⇒ partial G 2s add to the overall G 2 for conditional independence,A ⊥ B |C

G 2
A⊥B |C =

∑
k

G 2
A⊥B |C(k)

Table: Partial and Overall conditional tests, Hair ⊥ Eye |Sex

Model df G 2 p-value
[Hair ][Eye] | Male 9 44.445 0.000
[Hair ][Eye] | Female 9 112.233 0.000
[Hair ][Eye] | Sex 18 156.668 0.000
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Mosaics software Web applet

Software for Mosaic Displays: Web applet

Demonstration web applet

Go to: http://datavis.ca/online/mosaics/

Runs the current version of mosaics.sas via a cgi script (perl)

Can:

run sample data,
upload a data file,
enter data in a form.

Choose model fitting and display options (not all supported).

Provides (limited) interaction with the mosaics via javascript
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Mosaics software SAS

Software for Mosaic Displays: SAS

SAS software & documentation
http://datavis.ca/mosaics/mosaics.pdf - User Guide
http://datavis.ca/books/vcd/macros.html - Software

Examples: Many in VCD and on web site

SAS/IML modules: mosaics.sas— Most flexible

Enter frequency table directly in SAS/IML, or read from a SAS dataset.
Select, collapse, reorder, re-label table levels using SAS/IML statements
Specify structural 0s, fit specialized models (e.g., quasi-independence)
Interface to models fit using PROC GENMOD
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Mosaics software SAS

Software for Mosaic Displays: SAS

Macro interface: mosaic macro, table macro, mosmat macro

mosaic macro— Easiest to use

Direct input from a SAS dataset
No knowledge of SAS/IML required
Reorder table variables; collapse, reorder table levels with table macro
Convenient interface to partial mosaics (BY=)

table macro
Create frequency table from raw data
Collapse, reorder table categories
Re-code table categories using SAS formats, e.g., 1=’Male’ 2=’Female’

mosmat macro
Mosaic matrices— analog of scatterplot matrix (Friendly, 1999)
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Mosaics software SAS

mosaic macro example: Berkeley data

berkeley.sas
1 title 'Berkeley Admissions data';
2 proc format;
3 value admit 1="Admitted" 0="Rejected" ;
4 value dept 1="A" 2="B" 3="C" 4="D" 5="E" 6="F";
5 value $sex 'M'='Male' 'F'='Female';
6 data berkeley;
7 do dept = 1 to 6;
8 do gender = 'M', 'F';
9 do admit = 1, 0;

10 input freq @@;
11 output;
12 end; end; end;
13 /* -- Male -- - Female- */
14 /* Admit Rej Admit Rej */
15 datalines;
16 512 313 89 19 /* Dept A */
17 353 207 17 8 /* B */
18 120 205 202 391 /* C */
19 138 279 131 244 /* D */
20 53 138 94 299 /* E */
21 22 351 24 317 /* F */
22 ;
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Mosaics software SAS

Data set berkeley:

dept gender admit freq

1 M 1 512
1 M 0 313
1 F 1 89
1 F 0 19
2 M 1 353
2 M 0 207
2 F 1 17
2 F 0 8
3 M 1 120
3 M 0 205
3 F 1 202
3 F 0 391
4 M 1 138
4 M 0 279
4 F 1 131
4 F 0 244
5 M 1 53
5 M 0 138
5 F 1 94
5 F 0 299
6 M 1 22
6 M 0 351
6 F 1 24
6 F 0 317
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Mosaics software SAS

mosaic macro example: Berkeley data

mosaic9m.sas
1 goptions hsize=7in vsize=7in;
2 %include catdata(berkeley);
3

4 *-- apply character formats to numeric table variables;
5 %table(data=berkeley,
6 var=Admit Gender Dept,
7 weight=freq,
8 char=Y, format=admit admit. gender $sex. dept dept.,
9 order=data, out=berkeley);

10

11 %mosaic(data=berkeley,
12 vorder=Dept Gender Admit, /* reorder variables */
13 plots=2:3, /* which plots? */
14 fittype=joint, /* fit joint indep. */
15 split=H V V, htext=3); /* options */

NB: The fittype= argument allows various types of sequential models: joint,
conditional, etc.
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Mosaics software SAS

mosaic macro example: Berkeley data
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Mosaics software SAS

mosmat macro: Mosaic matrices
mosmat9m.sas

1 %include catdata(berkeley);
2 %mosmat(data=berkeley,
3 vorder=Admit Gender Dept, sort=no);
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Mosaics software SAS

Partial mosaics
mospart3.sas

1 %include catdata(hairdat3s);
2 %gdispla(OFF);
3 %mosaic(data=haireye,
4 vorder=Hair Eye Sex, by=Sex,
5 htext=2, cellfill=dev);
6 %gdispla(ON);
7 %panels(rows=1, cols=2); /* make 2 figs -> 1 */
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Mosaics software vcd package in R

Using the vcd package in R

>library(vcd) # load the vcd package & friends
>
>data(HairEyeColor)
>structable(Eye ~ Hair + Sex, data=HairEyeColor)

Eye Brown Blue Hazel Green
Hair Sex
Black Male 32 11 10 3

Female 36 9 5 2
Brown Male 53 50 25 15

Female 66 34 29 14
Red Male 10 10 7 7

Female 16 7 7 7
Blond Male 3 30 5 8

Female 4 64 5 8

The structable() function →‘flat’ representation of an n-way table, similar
to mosaic displays
Formula interface: Col factors ∼ row factors
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Mosaics software vcd package in R

Using the vcd package in R

The loglm() function fits a loglinear model, returns a loglm object

Fit the 3-way mutual independence model: Hair + Eye + Sex ≡ [Hair] [Eye]
[Sex]
Printing the object gives a brief model summary (badness of fit)

>## Independence model of hair and eye color and sex.
>mod.1 <- loglm(~Hair+Eye+Sex, data=HairEyeColor)
>mod.1

Call:
loglm(formula = ~Hair + Eye + Sex, data = HairEyeColor)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 166.3001 24 0
Pearson 164.9247 24 0

The mosaic() function plots the object.
the vcdExtra package extends mosaic() to glm() models.
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Mosaics software vcd package in R

>mosaic(mod.1, main="model: [Hair][Eye][Sex]")
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Mosaics software vcd package in R

vcd: Other models
>## Joint independence model.
>mod.2 <- loglm(~Hair*Eye+Sex, data=HairEyeColor)
>mod.2

Call:
loglm(formula = ~Hair * Eye + Sex, data = HairEyeColor)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 19.85656 15 0.1775045
Pearson 19.56712 15 0.1891745

>## Conditional independence model: Hair*Eye + Sex*Eye
>mod.3 <- loglm(~(Hair+Sex)*Eye, data=HairEyeColor)
>mod.3

Call:
loglm(formula = ~(Hair + Sex) * Eye, data = HairEyeColor)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 18.32715 12 0.1061122
Pearson 18.04110 12 0.1144483
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Mosaics software vcd package in R

>mosaic(mod.2, main="model: [HairEye][Sex]")
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Mosaics software vcd package in R

>mosaic(mod.2, main="model: [HairEye][Sex]", gp=shading_Friendly)
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Mosaics software vcd package in R

Testing differences between models

For nested models, M1 ⊂ M2 (M1 nested within, a special case of M2), the
difference in LR G 2, ∆ = G 2(M1)− G 2(M2) is a specific test of the
difference between them. Here, ∆ ∼ χ2 with df = df1 − df2.
R functions are object-oriented: they do different things for different types of
objects.

>anova(mod.1, mod.2)

LR tests for hierarchical log-linear models

Model 1:
~Hair + Eye + Sex
Model 2:
~Hair * Eye + Sex

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 166.30014 24
Model 2 19.85656 15 146.44358 9 0.0000
Saturated 0.00000 0 19.85656 15 0.1775
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Structured tables Ordinal variables

More structured tables

Ordered categories

Tables with ordered categories may allow more parsimonious tests of association

Can represent λABij by a small number of parameters
→ more focused and more powerful tests of lack of independence (recall:
CMH tests)
Allow one to “explain” the pattern of association in a compact way.

Square tables

For square I × I tables, where row and column variables have the same categories:

Can ignore diagonal cells, where association is expected and test remaining
association (quasi-independence)
Can test whether association is symmetric around the diagonal cells.
Can test substantively important hypotheses (e.g., mobility tables)

All of these require the GLM approach for model fitting
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Structured tables Ordinal variables

Ordered categories I

Ordinal scores
In many cases it may be reasonable to assign numeric scores, {ai} to an
ordinal row variable and/or numeric scores, {bi} to an ordinal column variable.
Typically, scores are equally spaced and sum to zero, {ai} = i − (I + 1)/2,
e.g., {ai} = {−1, 0, 1} for I=3.

Linear-by-Linear (Uniform) Association: When both variables are
ordinal, the simplest model posits that any association is linear in both
variables.

λABij = γ aibj

Only adds one additional parameter to the independence model (γ = 0).
It is similar to CMH test for linear association
For integer scores, the local log odds ratios for any contiguous 2 × 2 table are
all equal, log θij = γ
This is a model of uniform association — simple interpretation!
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Structured tables Ordinal variables

Ordered categories II

For a two way table, there are 4 possibilities, depending on which variables
are ordinal, and assigned scores:
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Structured tables Ordinal variables

Ordered categories III

Row Effects and Column Effects: When only one variable is
assigned scores, we have the row effects model or the column effects model .

E.g., in the row effects model, the row variable (A) is treated as nominal,
while the column variable (B) is assigned ordered scores {bj}.

logmij = µ+ λA
i + λB

j + αibj

where the row parameters, αi , are defined so they sum to zero.
This model has (I − 1) more parameters than the independence model.
A Row Effects + Column Effects model allows both variables to be ordered,
but not necessarily with linear scores.

Fitting models for ordinal variables
Create numeric variables for category scores
PROC GENMOD: Use as quantitative variables in MODEL statement, but not
listed as CLASS variables
R: Create numeric variables with as.numeric(factor)
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Structured tables Ordinal variables

Ordered categories: RC models

RC(1) model: Generalizes the uniform association, R, C and R+C models
by relaxing the assumption of specified order and spacing.

RC (1) : log mij = µ+ λAi + λBj + φµiνj

The row parameters (µi ) and column parameters (νj) are estimated from the
data.
φ is the measure of association, similar to γ in the uniform association model

RC(2) . . . RC(M) models: Allow two (or more) log-multiplicative
association terms; e.g.:

RC (2) : log mij = µ+ λAi + λBj + φ1µi1νj1 + φ2µi2νj2

Related to CA, but provide hypothesis tests, std. errors, etc.

Fitting RC models
SAS: no implementation
R: Fit with gnm(Freq ~ R + C + Mult(R, C))
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Relations among models

Structured models:
different ways to account
for association

Ordered by: df (# of
parameters)

Arrows show nested models
(compare directly: ∆χ2)

All can be compared using
AIC (or BIC)
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Example: Mental impairment and parents’ SES

Srole et al. (1978) Data on mental health status of ∼1600 young NYC
residents in relation to parents’ SES.

Mental health: Well, mild symptoms, moderate symptoms, Impaired
SES: 1 (High) – 6 (Low)

Mental Parents’ SES
health High 2 3 4 5 Low

1: Well 64 57 57 72 36 21
2: Mild 94 94 105 141 97 71

3: Moderate 58 54 65 77 54 54
4: Impaired 46 40 60 94 78 71
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Before fitting models, it is often useful to explore the relation amongs the
row/column categories. Correspondence analysis is a good idea!

Mental impairment and SES
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Both variables are ordered

High SES goes with better
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Can we treat either or both
as equally-spaced?

GLM approach allows
testing/comparing
hypotheses vs. eye-balling

Parameter estimates
quantify effects.
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Structured tables Ordinal variables

Visual assessment of various loglin/GLM models: mosaic displays
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Mental Impairment and SES: Independence
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Linear x Linear

Residuals from the independence model show an opposite-corner pattern.
This is consistent with both:

Linear × linear model: equi-spaced scores for both Mental and SES
Row effects model: equi-spaced scores for SES, ordered scores for Mental
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Statistical assesment:

Table: Mental health data: Goodness-of-fit statistics for ordinal loglinear models

Model G 2 df Pr(> G 2) AIC AIC-best
Independence 47.418 15 0.00003 65.418 35.523
Col effects (SES) 6.829 10 0.74145 34.829 4.934
Row effects (mental) 6.281 12 0.90127 30.281 0.386
Lin x Lin 9.895 14 0.76981 29.895 0.000

Both the Row Effects and Linear × linear models are significantly better than
the Independence model

AIC indicates a slight preference for the Linear × linear model

In the Linear × linear model, the estimate of the coefficient of aibj is

γ̂ = 0.0907 = ̂log θ, so θ̂ = exp(0.0907) = 1.095.

7→ each step down the SES scale increases the odds of being classified one
step poorer in mental health by 9.5%.

Compare with purely exploratory (CA) interpretation: mental health increases
with SES
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Fitting these models with PROC GENMOD:
mentgen2.sas

1 %include catdata(mental);
2 data mental;
3 set mental;
4 m_lin = mental; *-- copy m_lin and s_lin for;
5 s_lin = ses; *-- use non-CLASS variables;
6

7 title 'Independence model';
8 proc genmod data=mental;
9 class mental ses;

10 model count = mental ses / dist=poisson obstats residuals;
11 format mental mental. ses ses.;
12 ods output obstats=obstats;
13 %mosaic(data=obstats, vorder=Mental SES, resid=stresdev,
14 title=Mental Impairment and SES: Independence, split=H V);

Row Effects model: mentgen2.sas
16 proc genmod data=mental;
17 class mental ses;
18 model count = mental ses mental*s_lin / dist=poisson obstats;
19 ...

Linear × linear model:
mentgen2.sas

21 proc genmod data=mental;
22 class mental ses;
23 model count = mental ses m_lin*s_lin / dist=poisson obstats;
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Fitting these models with glm() in R (see: mental-glm.R for plots)

library(vcdExtra)
data(Mental)
# Integer scores for rows/cols
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)

indep <- glm(Freq ~ mental+ses, family = poisson, data=Mental)

# column effects model (ses)
coleff <- glm(Freq ~ mental + ses + Rscore:ses,

family = poisson, data = Mental)

# row effects model (mental)
roweff <- glm(Freq ~ mental + ses + mental:Cscore,

family = poisson, data = Mental)

# linear x linear association
linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,

family = poisson, data = Mental)

# compare models
AIC(indep, coleff, roweff, linlin)
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Structured tables Square tables

Square tables
Tables where two (or more) variables have the same category levels:

Employment categories of related persons (mobility tables)
Multiple measurements over time (panel studies; longitudinal data)
Repeated measures on the same individuals under different conditions
Related/repeated measures are rarely independent, but may have simpler
forms than general association

E.g., vision data: Left and right eye acuity grade for 7477 women
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Independence, G2(9)=6671.5
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Square tables: Quasi-Independence

Related/repeated measures are rarely independent— most observations often
fall on diagonal cells.

Quasi-independence ignores diagonals: tests independence in remaining cells
(λij = 0 for i 6= j).

The model dedicates one parameter (δi ) to each diagonal cell, fitting them
exactly,

log mij = µ+ λAi + λBj + δi I (i = j)

where I (•) is the indicator function.

This model may be fit as a GLM by including indicator variables for each
diagonal cell: fitted exactly

diag 4 rows 4 cols

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4
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Using PROC GENMOD
· · · mosaic10g.sas

1 title 'Quasi-independence model (women)';
2 proc genmod data=women;
3 class RightEye LeftEye diag;
4 model Count = LeftEye RightEye diag /
5 dist=poisson link=log obstats residuals;
6 ods output obstats=obstats;
7 %mosaic(data=obstats, vorder=RightEye LeftEye, ...);

Mosaic:
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Quasi-Independence, G2(5)=199.1
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Square tables: Symmetry

Tests whether the table is symmetric around the diagonal, i.e., mij = mji

As a loglinear model, symmetry is

log mij = µ+ λAi + λBj + λABij ,

subject to the conditions λAi = λBj and λABij = λABji .

This model may be fit as a GLM by including indicator variables with equal
values for symmetric cells, and indicators for the diagonal cells (fit exactly)

symmetry 4 rows 4 cols)

1 12 13 14
12 2 23 24
13 23 3 34
14 24 34 4
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Using PROC GENMOD
· · · mosaic10g.sas

1 proc genmod data=women;
2 class symmetry;
3 model Count = symmetry /
4 dist=poisson link=log obstats residuals;
5 ods output obstats=obstats;
6 %mosaic(data=obstats, vorder=RightEye LeftEye, ...);

Mosaic:
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Symmetry, G2(6)=19.25
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Quasi-Symmetry
Symmetry is often too restrictive: 7→ equal marginal frequencies (λA

i = λB
i )

PROC GENMOD: Use the usual marginal effect parameters + symmetry:

· · · mosaic10g.sas
1 proc genmod data=women;
2 class LeftEye RightEye symmetry;
3 model Count = LeftEye RightEye symmetry /
4 dist=poisson link=log obstats residuals;
5 ods output obstats=obstats;
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Quasi-Symmetry, G2(3)=7.27
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Comparing models

Table: Summary of models fit to vision data

Model G 2 df Pr(> G 2) AIC AIC - min(AIC)

Independence 6671.51 9 0.00000 6685.51 6656.23
Linear*Linear 1818.87 8 0.00000 1834.87 1805.59

Row+Column Effects 1710.30 4 0.00000 1734.30 1705.02
Quasi-Independence 199.11 5 0.00000 221.11 191.83

Symmetry 19.25 6 0.00376 39.25 9.97
Quasi-Symmetry 7.27 3 0.06375 33.27 3.99

Ordinal Quasi-Symmetry 7.28 5 0.20061 29.28 0.00

Only the quasi-symmetry models provide an acceptable fit: When vision is
unequal, association is symmetric!

The ordinal quasi-symmetry model is most parsimonious

AIC is your friend for model comparisons
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Using the gnm package in R
Diag() and Symm(): structured associations for square tables
Topo(): more general structured associations
mosaic.glm() in vcdExtra

library(vcdExtra)
library(gnm)
women <- subset(VisualAcuity, gender=="female", select=-gender)

indep <- glm(Freq ~ right + left, data = women, family=poisson)
mosaic(indep, residuals_type="rstandard", gp=shading_Friendly,

main="Vision data: Independence (women)" )

quasi.indep <- glm(Freq ~ right + left + Diag(right, left),
data = women, family = poisson)

symmetry <- glm(Freq ~ Symm(right, left),
data = women, family = poisson)

quasi.symm <- glm(Freq ~ right + left + Symm(right, left),
data = women, family = poisson)

# model comparisons: for *nested* models
anova(indep, quasi.indep, quasi.symm, test="Chisq")
anova(symmetry, quasi.symm, test="Chisq")
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Survival on the Titanic

Survival on the Titanic: 2201 passengers, classified by Class, Gender, Age,
survived. Data from:

Mersey (1912), Report on the loss of the “Titanic” S.S.
Dawson (1995)

Class
Gender Age Survived 1st 2nd 3rd Crew
Male Adult Died 118 154 387 670
Female 4 13 89 3

Male Child 0 0 35 0
Female 0 0 17 0

Male Adult Survived 57 14 75 192
Female 140 80 76 20

Male Child 5 11 13 0
Female 1 13 14 0

Order of variables in mosaics: Class, Gender, Age, Survival
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Survival on the Titanic : Background variables

1st     2nd     3rd     Crew    

M
a

le
  

  
F

e
m

a
le

  

Class × Gender:

% males decreases with
increasing economic class,

crew almost entirely male

Sequential mosaics: understand as-
sociations among background vari-
ables
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Survival on the Titanic : Background variables

1st     2nd     3rd     Crew    
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Adult   Child   

3 way: {Class, Gender} ⊥ Age ?

Overall proportion of children
quite small (about 5 %).

% children smallest in 1st
class, largest in 3rd class.

Residuals: greater number of
children in 3rd class (families?)
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Survival on the Titanic : 4 way table

1st     2nd     3rd     Crew    
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4 way: {Class, Gender, Age} ⊥ Sur-
vival ?

Joint independence: [CGA][S]

Minimal null model when C, G,
A are explanatory

More women survived, but
greater % in 1st & 2nd

Among men, % survived
increases with class.

Fits poorly [G 2
(15) = 671.96] ⇒

Add S-assoc terms
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Survival on the Titanic : Better models
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women and children first −→
model [CGA][CS][GAS] (Age and
Gender affect survival, independent
of Class)
Model improved slightly, but still
not good (G 2

(9) = 94.54).
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Survival on the Titanic : Better models
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Class interacts with Age & Gender on
survival:

Model [CGA][CGS][CAS]
G 2
(4) now 1.69, a very good fit.

Perhaps too good? (Overfitting?)
→ check AIC!

90 / 96

Larger tables Survival on the Titanic

Titanic Conclusions

Mosaic displays allow a detailed explanation:

Regardless of Age and Gender, lower economic status −→ increased mortality.

Differences due to Class were moderated by both Age and Gender.

Women more likely overall to survive than men, but:

Class × Gender: women in 3rd class did not have a significant advantage
men in 1st class did , compared to men in other classes.

Class × Age:

no children in 1st or 2nd class died, but
nearly two-thirds of children in 3rd class died.
For adults, mortality ↑ as economic class ↓.

Summary statement:
“women and children (according to class), then 1st class men”.
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Summary: Part 3

Mosaic displays
Recursive splits of unit square → area ∼ observed frequency
Fit any loglinear model → shade tiles by residuals
⇒ see departure of the data from the model
SAS: mosaic macro, mosmat macro; R: mosaic()

Loglinear models
Loglinear approach: analog of ANOVA for log(mijk···)
GLM approach: linear model for log(m) = Xβ ∼ Poisson()
SAS: PROC CATMOD, PROC GENMOD; R: loglm(), glm()
Visualize: mosaic, mosmat macro; R: mosaic()
Complex tables: sequential plots, partial plots are useful

Structured tables
Ordered factors: models using ordinal scores → simpler, more powerful
Square tables: Test more specific hypotheses about pattern of association
SAS: PROC GENMOD; R: glm(), gnm()
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