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Abstract

This tutorial describes the creation and manipulation of frequency and contingency tables
from categorical variables, along with tests of independence, measures of association, and meth-
ods for graphically displaying results. The framework is provided by the R package vcd, but
other packages are used to help with various tasks. The vcdExtra package extends the graphical
and statistical methods provided by vcd.

This package is now the main support package for the book Discrete Data Analysis with
R: Visualizing and Modeling Techniques for Categorical and Count Data (Friendly and Meyer
2016). The web page for the book, ddar.datavis.ca, gives further details.
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1 Introduction

This tutorial, part of the vcdExtra package, describes how to work with categorical data in the
context of fitting statistical models in R and visualizing the results using the vcd and vcdExtra
packages. It focuses first on methods and tools for creating and manipulating R data objects which
represent frequency and contingency tables involving categorical variables.
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Further sections describe some simple methods for calculating tests of independence and mea-
sures of association amomg categorial variables, and also methods for graphically displaying results.

There is much more to the analysis of categorical data than is described here, where the em-
phasis is on cross-tabulated tables of frequencies (“contingency tables”), statistical tests, associated
loglinear models, and visualization of how variables are related.

A more general treatment of graphical methods for categorical data is contained in the book,
Discrete Data Analysis with R: Visualizing and Modeling Techniques for Categorical and Count Data
(Friendly and Meyer 2016). An earlier book using SAS is Visualizing Categorical Data (Friendly
2000), for which vcd is a partial R companion, covering topics not otherwise available in R. On the
other hand, the implementation of graphical methods in vcd is more general in many respects than
what I provided in SAS. Statistical models for categorical data in R have been extended considerably
with the gnm package for generalized nonlinear models. The vcdExtra package extends vcd methods
to models fit using glm() and gnm().

A more complete theoretical description of these statistical methods is provided in Agresti’s
(2002; 2013) Categorical Data Analysis. For this, see the Splus/R companion by Laura Thomp-
son, http://www.stat.ufl.edu/~aa/cda/Thompson_manual.pdf and Agresti’s support web page,
http://www.stat.ufl.edu/~aa/cda/cda.html.

2 Creating and manipulating frequency tables

R provides many methods for creating frequency and contingency tables. Several are described
below. In the examples below, we use some real examples and some anonymous ones, where the
variables A, B, and C represent categorical variables, and X represents an arbitrary R data object.

The first thing you need to know is that categorical data can be represented in three different
forms in R, and it is sometimes necessary to convert from one form to another, for carrying out
statistical tests, fitting models or visualizing the results. Once a data object exists in R, you can
examine its complete structure with the str() function, or view the names of its components with
the names() function.

case form a data frame containing individual observations, with one or more factors, used as the
classifying variables. In case form, there may also be numeric covariates. The total number
of observations is nrow(X), and the number of variables is ncol(X).

Example : The Arthritis data is available in case form in the vcd package. There are two

explanatory factors: Treatment and Sex. Age is a numeric covariate, and Improved is the
response— an ordered factor, with levels None < Some < Marked. Excluding Age, we would
have a 2× 2× 3 contingency table for Treatment, Sex and Improved.

> names(Arthritis) # show the variables

[1] "ID" "Treatment" "Sex" "Age" "Improved"

> str(Arthritis) # show the structure

'data.frame': 84 obs. of 5 variables:

$ ID : int 57 46 77 17 36 23 75 39 33 55 ...

$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...

$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...

$ Age : int 27 29 30 32 46 58 59 59 63 63 ...

$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...

> head(Arthritis,5) # first 5 observations, same as Arthritis[1:5,]
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ID Treatment Sex Age Improved

1 57 Treated Male 27 Some

2 46 Treated Male 29 None

3 77 Treated Male 30 None

4 17 Treated Male 32 Marked

5 36 Treated Male 46 Marked

frequency form a data frame containing one or more factors, and a frequency variable, often
called Freq or count. The total number of observations is sum(X$Freq), sum(X[,"Freq"])
or some equivalent form. The number of cells in the table is nrow(X).

Example : For small frequency tables, it is often convenient to enter them in frequency form

using expand.grid() for the factors and c() to list the counts in a vector. The example
below, from Agresti (2002) gives results for the 1991 General Social Survey, with respondents
classified by sex and party identification.

> # Agresti (2002), table 3.11, p. 106

> GSS <- data.frame(

+ expand.grid(sex=c("female", "male"),

+ party=c("dem", "indep", "rep")),

+ count=c(279,165,73,47,225,191))

> GSS

sex party count

1 female dem 279

2 male dem 165

3 female indep 73

4 male indep 47

5 female rep 225

6 male rep 191

> names(GSS)

[1] "sex" "party" "count"

> str(GSS)

'data.frame': 6 obs. of 3 variables:

$ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2

$ party: Factor w/ 3 levels "dem","indep",..: 1 1 2 2 3 3

$ count: num 279 165 73 47 225 191

> sum(GSS$count)

[1] 980

table form a matrix, array or table object, whose elements are the frequencies in an n-way table.
The variable names (factors) and their levels are given by dimnames(X). The total number of
observations is sum(X). The number of dimensions of the table is length(dimnames(X)), and
the table sizes are given by sapply(dimnames(X), length).

Example : The HairEyeColor is stored in table form in vcd.

> str(HairEyeColor) # show the structure
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table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...

- attr(*, "dimnames")=List of 3

..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"

..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"

..$ Sex : chr [1:2] "Male" "Female"

> sum(HairEyeColor) # number of cases

[1] 592

> sapply(dimnames(HairEyeColor), length) # table dimension sizes

Hair Eye Sex

4 4 2

Example : Enter frequencies in a matrix, and assign dimnames, giving the variable names

and category labels. Note that, by default, matrix() uses the elements supplied by columns
in the result, unless you specify byrow=TRUE.

> ## A 4 x 4 table Agresti (2002, Table 2.8, p. 57) Job Satisfaction

> JobSat <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4)

> dimnames(JobSat) = list(income=c("< 15k", "15-25k", "25-40k", "> 40k"),

+ satisfaction=c("VeryD", "LittleD", "ModerateS", "VeryS"))

> JobSat

satisfaction

income VeryD LittleD ModerateS VeryS

< 15k 1 3 10 6

15-25k 2 3 10 7

25-40k 1 6 14 12

> 40k 0 1 9 11

JobSat is a matrix, not an object of class("table"), and some functions are happier with
tables than matrices. You can coerce it to a table with as.table(),

> JobSat <- as.table(JobSat)

> str(JobSat)

table [1:4, 1:4] 1 2 1 0 3 3 6 1 10 10 ...

- attr(*, "dimnames")=List of 2

..$ income : chr [1:4] "< 15k" "15-25k" "25-40k" "> 40k"

..$ satisfaction: chr [1:4] "VeryD" "LittleD" "ModerateS" "VeryS"

2.1 Ordered factors and reordered tables

In table form, the values of the table factors are ordered by their position in the table. Thus in the
JobSat data, both income and satisfaction represent ordered factors, and the positions of the
values in the rows and columns reflects their ordered nature.

Yet, for analysis, there are time when you need numeric values for the levels of ordered factors in
a table, e.g., to treat a factor as a quantitative variable. In such cases, you can simply re-assign the
dimnames attribute of the table variables. For example, here, we assign numeric values to income

as the middle of their ranges, and treat satisfaction as equally spaced with integer scores.
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> dimnames(JobSat)$income<-c(7.5,20,32.5,60)

> dimnames(JobSat)$satisfaction<-1:4

For the HairEyeColor data, hair color and eye color are ordered arbitrarily. For visualizing the
data using mosaic plots and other methods described below, it turns out to be more useful to assure
that both hair color and eye color are ordered from dark to light. Hair colors are actually ordered
this way already, and it is easiest to re-order eye colors by indexing. Again str() is your friend.

> HairEyeColor <- HairEyeColor[, c(1,3,4,2), ]

> str(HairEyeColor)

num [1:4, 1:4, 1:2] 32 53 10 3 10 25 7 5 3 15 ...

- attr(*, "dimnames")=List of 3

..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"

..$ Eye : chr [1:4] "Brown" "Hazel" "Green" "Blue"

..$ Sex : chr [1:2] "Male" "Female"

This is also the order for both hair color and eye color shown in the result of a correspondence
analysis (Figure 6) below.

With data in case form or frequency form, when you have ordered factors represented with
character values, you must ensure that they are treated as ordered in R.1

Imagine that the Arthritis data was read from a text file. By default the Improved will
be ordered alphabetically: Marked, None, Some— not what we want. In this case, the function
ordered() (and others) can be useful.

> Arthritis <- read.csv("arthritis.txt",header=TRUE)

> Arthritis$Improved <- ordered(Arthritis$Improved, levels=c("None", "Some", "Marked"))

With this order of Improved, the response in this data, a mosaic display of Treatment and
Improved (Figure 1)shows a clearly interpretable pattern.

Finally, there are situations where, particularly for display purposes, you want to re-order
the dimensions of an n-way table, or change the labels for the variables or levels. This is easy
when the data are in table form: aperm() permutes the dimensions, and assigning to names and
dimnames changes variable names and level labels respectively. We will use the following version of
UCBAdmissions in Section 3.4 below.2

> UCB <- aperm(UCBAdmissions, c(2, 1, 3))

> dimnames(UCB)[[2]] <- c("Yes", "No")

> names(dimnames(UCB)) <- c("Sex", "Admit?", "Department")

> ftable(UCB)

Department A B C D E F

Sex Admit?

Male Yes 512 353 120 138 53 22

No 313 207 205 279 138 351

Female Yes 89 17 202 131 94 24

No 19 8 391 244 299 317

1In SAS, many procedures offer the option order = data | internal | formatted to allow character values to be
ordered according to (a) their order in the data set, (b) sorted internal value, or (c) sorted formatted representation
provided by a SAS format.

2 Changing Admit to Admit? might be useful for display purposes, but is dangerous— because it is then difficult
to use that variable name in a model formula. See Section 5.3 for options labeling_args and set_labels to change
variable and level names for displays in the strucplot framework.
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Figure 1: Mosaic plot for the Arthritis data, showing the marginal model of independence for
Treatment and Improved. Age, a covariate, and Sex are ignored here.

2.2 structable()

For 3-way and larger tables the structable() function in vcd provides a convenient and flexible
tabular display. The variables assigned to the rows and columns of a two-way display can be
specified by a model formula.

> structable(HairEyeColor) # show the table: default

Eye Brown Hazel Green Blue

Hair Sex

Black Male 32 10 3 11

Female 36 5 2 9

Brown Male 53 25 15 50

Female 66 29 14 34

Red Male 10 7 7 10

Female 16 7 7 7

Blond Male 3 5 8 30

Female 4 5 8 64

> structable(Hair+Sex ~ Eye, HairEyeColor) # specify col ~ row variables

Hair Black Brown Red Blond

Sex Male Female Male Female Male Female Male Female

Eye

Brown 32 36 53 66 10 16 3 4
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Hazel 10 5 25 29 7 7 5 5

Green 3 2 15 14 7 7 8 8

Blue 11 9 50 34 10 7 30 64

It also returns an object of class "structable" which may be plotted with mosaic() (not shown
here).

> HSE < - structable(Hair+Sex ~ Eye, HairEyeColor) # save structable object

> mosaic(HSE) # plot it

2.3 table() and friends

You can generate frequency tables from factor variables using the table() function, tables of
proportions using the prop.table() function, and marginal frequencies using margin.table().

> n=500

> A <- factor(sample(c("a1","a2"), n, rep=TRUE))

> B <- factor(sample(c("b1","b2"), n, rep=TRUE))

> C <- factor(sample(c("c1","c2"), n, rep=TRUE))

> mydata <- data.frame(A,B,C)

> # 2-Way Frequency Table

> attach(mydata)

> mytable <- table(A,B) # A will be rows, B will be columns

> mytable # print table

> margin.table(mytable, 1) # A frequencies (summed over B)

> margin.table(mytable, 2) # B frequencies (summed over A)

> prop.table(mytable) # cell percentages

> prop.table(mytable, 1) # row percentages

> prop.table(mytable, 2) # column percentages

table() can also generate multidimensional tables based on 3 or more categorical variables. In
this case, use the ftable() or structable() function to print the results more attractively.

> # 3-Way Frequency Table

> mytable <- table(A, B, C)

> ftable(mytable)

table() ignores missing values by default. To include NA as a category in counts, include the
table option exclude=NULL if the variable is a vector. If the variable is a factor you have to create
a new factor using newfactor <- factor(oldfactor, exclude=NULL).

2.4 xtabs()

The xtabs() function allows you to create crosstabulations of data using formula style input. This
typically works with case-form data supplied in a data frame or a matrix. The result is a contingency
table in array format, whose dimensions are determined by the terms on the right side of the formula.

> # 3-Way Frequency Table

> mytable <- xtabs(~A+B+C, data=mydata)

> ftable(mytable) # print table

> summary(mytable) # chi-square test of indepedence
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If a variable is included on the left side of the formula, it is assumed to be a vector of frequencies
(useful if the data have already been tabulated in frequency form).

> (GSStab <- xtabs(count ~ sex + party, data=GSS))

party

sex dem indep rep

female 279 73 225

male 165 47 191

> summary(GSStab)

Call: xtabs(formula = count ~ sex + party, data = GSS)

Number of cases in table: 980

Number of factors: 2

Test for independence of all factors:

Chisq = 7.01, df = 2, p-value = 0.03005

2.5 Collapsing over table factors: aggregate(), margin.table() and apply()

It sometimes happens that we have a data set with more variables or factors than we want to
analyse, or else, having done some initial analyses, we decide that certain factors are not important,
and so should be excluded from graphic displays by collapsing (summing) over them. For example,
mosaic plots and fourfold displays are often simpler to construct from versions of the data collapsed
over the factors which are not shown in the plots.

The appropriate tools to use again depend on the form in which the data are represented— a
case-form data frame, a frequency-form data frame (aggregate()), or a table-form array or table
object (margin.table() or apply()).

When the data are in frequency form, and we want to produce another frequency data frame,
aggregate() is a handy tool, using the argument FUN=sum to sum the frequency variable over the
factors not mentioned in the formula.

Example : The data frame DaytonSurvey in the vcdExtra package represents a 25 table giving

the frequencies of reported use (“ever used?”) of alcohol, cigarettes and marijuana in a sample of
high school seniors, also classified by sex and race.

> str(DaytonSurvey)

'data.frame': 32 obs. of 6 variables:

$ cigarette: Factor w/ 2 levels "Yes","No": 1 2 1 2 1 2 1 2 1 2 ...

$ alcohol : Factor w/ 2 levels "Yes","No": 1 1 2 2 1 1 2 2 1 1 ...

$ marijuana: Factor w/ 2 levels "Yes","No": 1 1 1 1 2 2 2 2 1 1 ...

$ sex : Factor w/ 2 levels "female","male": 1 1 1 1 1 1 1 1 2 2 ...

$ race : Factor w/ 2 levels "white","other": 1 1 1 1 1 1 1 1 1 1 ...

$ Freq : num 405 13 1 1 268 218 17 117 453 28 ...

> head(DaytonSurvey)

cigarette alcohol marijuana sex race Freq

1 Yes Yes Yes female white 405

2 No Yes Yes female white 13

3 Yes No Yes female white 1

4 No No Yes female white 1

5 Yes Yes No female white 268

6 No Yes No female white 218
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To focus on the associations among the substances, we want to collapse over sex and race. The
right-hand side of the formula used in the call to aggregate() gives the factors to be retained in
the new frequency data frame, Dayton.ACM.df.

> # data in frequency form

> # collapse over sex and race

> Dayton.ACM.df <- aggregate(Freq ~ cigarette+alcohol+marijuana,

+ data=DaytonSurvey, FUN=sum)

> Dayton.ACM.df

cigarette alcohol marijuana Freq

1 Yes Yes Yes 911

2 No Yes Yes 44

3 Yes No Yes 3

4 No No Yes 2

5 Yes Yes No 538

6 No Yes No 456

7 Yes No No 43

8 No No No 279

When the data are in table form, and we want to produce another table, apply() with FUN=sum

can be used in a similar way to sum the table over dimensions not mentioned in the MARGIN argument.
margin.table() is just a wrapper for apply() using the sum() function.

Example : To illustrate, we first convert the DaytonSurvey to a 5-way table using xtabs(),

giving Dayton.tab.

> # in table form

> Dayton.tab <- xtabs(Freq~cigarette+alcohol+marijuana+sex+race, data=DaytonSurvey)

> structable(cigarette+alcohol+marijuana ~ sex+race, data=Dayton.tab)

cigarette Yes No

alcohol Yes No Yes No

marijuana Yes No Yes No Yes No Yes No

sex race

female white 405 268 1 17 13 218 1 117

other 23 23 0 1 2 19 0 12

male white 453 228 1 17 28 201 1 133

other 30 19 1 8 1 18 0 17

Then, use apply() on Dayton.tab to give the 3-way table Dayton.ACM.tab summed over sex and
race. The elements in this new table are the column sums for Dayton.tab shown by structable()

just above.

> # collapse over sex and race

> Dayton.ACM.tab <- apply(Dayton.tab, MARGIN=1:3, FUN=sum)

> Dayton.ACM.tab <- margin.table(Dayton.tab, 1:3) # same result

> structable(cigarette+alcohol ~ marijuana, data=Dayton.ACM.tab)

cigarette Yes No

alcohol Yes No Yes No

marijuana

Yes 911 3 44 2

No 538 43 456 279
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Many of these operations can be performed using the **ply() functions in the plyr package. For
example, with the data in a frequency form data frame, use ddply() to collapse over unmentioned
factors, and plyr::summarise()3 as the function to be applied to each piece.

> Dayton.ACM.df <- ddply(DaytonSurvey, .(cigarette, alcohol, marijuana),

+ plyr::summarise, Freq=sum(Freq))

2.6 Collapsing table levels: collapse.table()

A related problem arises when we have a table or array and for some purpose we want to reduce the
number of levels of some factors by summing subsets of the frequencies. For example, we may have
initially coded Age in 10-year intervals, and decide that, either for analysis or display purposes, we
want to reduce Age to 20-year intervals. The collapse.table() function in vcdExtra was designed
for this purpose.

Example : Create a 3-way table, and collapse Age from 10-year to 20-year intervals. First, we

generate a 2× 6× 3 table of random counts from a Poisson distribution with mean of 100.

> # create some sample data in frequency form

> sex <- c("Male", "Female")

> age <- c("10-19", "20-29", "30-39", "40-49", "50-59", "60-69")

> education <- c("low", 'med', 'high')

> data <- expand.grid(sex=sex, age=age, education=education)

> counts <- rpois(36, 100) # random Possion cell frequencies

> data <- cbind(data, counts)

> # make it into a 3-way table

> t1 <- xtabs(counts ~ sex + age + education, data=data)

> structable(t1)

age 10-19 20-29 30-39 40-49 50-59 60-69

sex education

Male low 98 105 104 90 90 101

med 97 105 101 88 97 107

high 99 101 109 88 99 96

Female low 102 117 101 105 85 88

med 106 84 92 116 110 96

high 106 96 121 91 107 102

Now collapse age to 20-year intervals, and education to 2 levels. In the arguments, levels of age

and education given the same label are summed in the resulting smaller table.

> # collapse age to 3 levels, education to 2 levels

> t2 <- collapse.table(t1,

+ age=c("10-29", "10-29", "30-49", "30-49", "50-69", "50-69"),

+ education=c("<high", "<high", "high"))

> structable(t2)

age 10-29 30-49 50-69

sex education

Male <high 405 383 395

high 200 197 195

Female <high 409 414 379

high 202 212 209

3 Ugh. This plyr function clashes with a function of the same name in vcdExtra. In this document I will use the
explicit double-colon notation to keep them separate.
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2.7 Converting among frequency tables and data frames

As we’ve seen, a given contingency table can be represented equivalently in different forms, but
some R functions were designed for one particular representation. Table 1 shows some handy tools
for converting from one form to another.

Table 1: Tools for converting among different forms for categorical data

To this
From this Case form Frequency form Table form
Case form noop xtabs(~A+B) table(A,B)

Frequency form expand.dft(X) noop xtabs(count~A+B)

Table form expand.dft(X) as.data.frame(X) noop

A contingency table in table form (an object of class(table)) can be converted to a data.frame
with as.data.frame().4 The resulting data.frame contains columns representing the classifying
factors and the table entries (as a column named by the responseName argument, defaulting to
Freq. This is the inverse of xtabs().

Example : Convert the GSStab in table form to a data.frame in frequency form.

> as.data.frame(GSStab)

sex party Freq

1 female dem 279

2 male dem 165

3 female indep 73

4 male indep 47

5 female rep 225

6 male rep 191

Example : Convert the Arthritis data in case form to a 3-way table of Treatment × Sex ×
Improved. Note the use of with() to avoid having to use Arthritis$Treatment etc. within the
call to table().5

> Art.tab <-with(Arthritis, table(Treatment, Sex, Improved))

> str(Art.tab)

'table' int [1:2, 1:2, 1:3] 19 6 10 7 7 5 0 2 6 16 ...

- attr(*, "dimnames")=List of 3

..$ Treatment: chr [1:2] "Placebo" "Treated"

..$ Sex : chr [1:2] "Female" "Male"

..$ Improved : chr [1:3] "None" "Some" "Marked"

> ftable(Art.tab)

Improved None Some Marked

Treatment Sex

4 Because R is object-oriented, this is actually a short-hand for the function as.data.frame.table().
5 table() does not allow a data argument to provide an environment in which the table variables are to be found.

In the examples in Section 2.3 I used attach(mydata) for this purpose, but attach() leaves the variables in the global
environment, while with() just evaluates the table() expression in a temporary environment of the data.
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Placebo Female 19 7 6

Male 10 0 1

Treated Female 6 5 16

Male 7 2 5

There may also be times that you will need an equivalent case form data.frame with factors
representing the table variables rather than the frequency table. For example, the mca() function in
package MASS only operates on data in this format. Marc Schwartz provided code for expand.dft()
on the Rhelp mailing list for converting a table back into a case form data.frame. This function is
included in vcdExtra.

Example : Convert the Arthritis data in table form (Art.tab) back to a data.frame in case

form, with factors Treatment, Sex and Improved.

> Art.df <- expand.dft(Art.tab)

> str(Art.df)

'data.frame': 84 obs. of 3 variables:

$ Treatment: Factor w/ 2 levels "Placebo","Treated": 1 1 1 1 1 1 1 1 1 1 ...

$ Sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...

$ Improved : Factor w/ 3 levels "Marked","None",..: 2 2 2 2 2 2 2 2 2 2 ...

2.8 A complex example

If you’ve followed so far, you’re ready for a more complicated example. The data file, tv.dat

represents a 4-way table of size 5 × 11 × 5 × 3 where the table variables (unnamed in the file) are
read as V1 – V4, and the cell frequency is read as V5. The file, stored in the doc/extdata directory
of vcdExtra, can be read as follows:

> tv.data<-read.table(system.file("doc","extdata","tv.dat",package="vcdExtra"))

> head(tv.data,5)

V1 V2 V3 V4 V5

1 1 1 1 1 6

2 2 1 1 1 18

3 3 1 1 1 6

4 4 1 1 1 2

5 5 1 1 1 11

For a local file, just use read.table() in this form:

> tv.data<-read.table("C:/R/data/tv.dat")

The data tv.dat came from the initial implementation of mosaic displays in R by Jay Emerson. In
turn, they came from the initial development of mosaic displays (Hartigan and Kleiner 1984) that
illustrated the method with data on a large sample of TV viewers whose behavior had been recorded
for the Neilson ratings. This data set contains sample television audience data from Neilsen Media
Research for the week starting November 6, 1995.

The table variables are:
V1– values 1:5 correspond to the days Monday–Friday;
V2– values 1:11 correspond to the quarter hour times 8:00PM through 10:30PM;
V3– values 1:5 correspond to ABC, CBS, NBC, Fox, and non-network choices;
V4– values 1:3 correspond to transition states: turn the television Off, Switch channels, or

Persist in viewing the current channel.

12



We are interested just the cell frequencies, and rely on the facts that the (a) the table is
complete— there are no missing cells, so nrow(tv.data)=825; (b) the observations are ordered
so that V1 varies most rapidly and V4 most slowly. From this, we can just extract the frequency
column and reshape it into an array.

> TV <- array(tv.data[,5], dim=c(5,11,5,3))

> dimnames(TV) <- list(c("Monday","Tuesday","Wednesday","Thursday","Friday"),

+ c("8:00","8:15","8:30","8:45","9:00","9:15","9:30",

+ "9:45","10:00","10:15","10:30"),

+ c("ABC","CBS","NBC","Fox","Other"), c("Off","Switch","Persist"))

> names(dimnames(TV))<-c("Day", "Time", "Network", "State")

More generally (even if there are missing cells), we can use xtabs() (or plyr::daply()) to do
the cross-tabulation, using V5 as the frequency variable. Here’s how to do this same operation with
xtabs():

> TV <- xtabs(V5 ~ ., data=tv.data)

> dimnames(TV) <- list(Day=c("Monday","Tuesday","Wednesday","Thursday","Friday"),

+ Time=c("8:00","8:15","8:30","8:45","9:00","9:15","9:30",

+ "9:45","10:00","10:15","10:30"),

+ Network=c("ABC","CBS","NBC","Fox","Other"),

+ State=c("Off","Switch","Persist"))

But this 4-way table is too large and awkward to work with. Among the networks, Fox and
Other occur infrequently. We can also cut it down to a 3-way table by considering only viewers
who persist with the current station.6

> TV <- TV[,,1:3,] # keep only ABC, CBS, NBC

> TV <- TV[,,,3] # keep only Persist -- now a 3 way table

> structable(TV)

Time 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30

Day Network

Monday ABC 146 151 156 83 325 350 386 340 352 280 278

CBS 337 293 304 233 311 251 241 164 252 265 272

NBC 263 219 236 140 226 235 239 246 279 263 283

Tuesday ABC 244 181 231 205 385 283 345 192 329 351 364

CBS 173 180 184 109 218 235 256 250 274 263 261

NBC 315 254 280 241 370 214 195 111 188 190 210

Wednesday ABC 233 161 194 156 339 264 279 140 237 228 203

CBS 158 126 207 59 98 103 122 86 109 105 110

NBC 134 146 166 66 194 230 264 143 274 289 306

Thursday ABC 174 183 197 181 187 198 211 86 110 122 117

CBS 196 185 195 104 106 116 116 47 102 84 84

NBC 515 463 472 477 590 473 446 349 649 705 747

Friday ABC 294 281 305 239 278 246 245 138 246 232 233

CBS 130 144 154 81 129 153 136 126 138 136 152

NBC 195 220 248 160 172 164 169 85 183 198 204

Finally, for some purposes, we might want to collapse the 11 times into a smaller number. Here,
we use as.data.frame.table() to convert the table back to a data frame, levels() to re-assign
the values of Time, and finally, xtabs() to give a new, collapsed frequency table.

6This relies on the fact that that indexing an array drops dimensions of length 1 by default, using the argument
drop=TRUE; the result is coerced to the lowest possible dimension.
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> TV.df <- as.data.frame.table(TV)

> levels(TV.df$Time) <- c(rep("8:00-8:59",4),rep("9:00-9:59",4), rep("10:00-10:44",3))

> TV2 <- xtabs(Freq ~ Day + Time + Network, TV.df)

> structable(Day ~ Time+Network,TV2)

Day Monday Tuesday Wednesday Thursday Friday

Time Network

8:00-8:59 ABC 536 861 744 735 1119

CBS 1167 646 550 680 509

NBC 858 1090 512 1927 823

9:00-9:59 ABC 1401 1205 1022 682 907

CBS 967 959 409 385 544

NBC 946 890 831 1858 590

10:00-10:44 ABC 910 1044 668 349 711

CBS 789 798 324 270 426

NBC 825 588 869 2101 585

Whew! See Figure 7 for a mosaic plot of the TV2 data.

3 Tests of Independence

3.1 CrossTable

OK, now we’re ready to do some analyses. For tabular displays, the CrossTable() function in
the gmodels package produces cross-tabulations modeled after PROC FREQ in SAS or CROSSTABS in
SPSS. It has a wealth of options for the quantities that can be shown in each cell.

> # 2-Way Cross Tabulation

> library(gmodels)

> CrossTable(GSStab,prop.t=FALSE,prop.r=FALSE,prop.c=FALSE)

Cell Contents

|-------------------------|

| N |

| Chi-square contribution |

|-------------------------|

Total Observations in Table: 980

| party

sex | dem | indep | rep | Row Total |

-------------|-----------|-----------|-----------|-----------|

female | 279 | 73 | 225 | 577 |

| 1.183 | 0.078 | 1.622 | |

-------------|-----------|-----------|-----------|-----------|

male | 165 | 47 | 191 | 403 |

| 1.693 | 0.112 | 2.322 | |

-------------|-----------|-----------|-----------|-----------|

Column Total | 444 | 120 | 416 | 980 |

-------------|-----------|-----------|-----------|-----------|
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There are options to report percentages (row, column, cell), specify decimal places, produce Chi-
square, Fisher, and McNemar tests of independence, report expected and residual values (pearson,
standardized, adjusted standardized), include missing values as valid, annotate with row and column
titles, and format as SAS or SPSS style output! See help(CrossTable) for details.

3.2 Chi-square test

For 2-way tables you can use chisq.test() to test independence of the row and column variable. By
default, the p-value is calculated from the asymptotic chi-squared distribution of the test statistic.
Optionally, the p-value can be derived via Monte Carlo simulation.

> (HairEye <- margin.table(HairEyeColor, c(1, 2)))

Eye

Hair Brown Hazel Green Blue

Black 68 15 5 20

Brown 119 54 29 84

Red 26 14 14 17

Blond 7 10 16 94

> chisq.test(HairEye)

Pearson's Chi-squared test

data: HairEye

X-squared = 138.29, df = 9, p-value < 2.2e-16

3.3 Fisher Exact Test

fisher.test(X) provides an exact test of independence. X must be a two-way contingency table in
table form. Another form, fisher.test(X, Y) takes two categorical vectors of the same length. For
tables larger than 2× 2 the method can be computationally intensive (or can fail) if the frequencies
are not small.

> fisher.test(GSStab)

Fisher's Exact Test for Count Data

data: GSStab

p-value = 0.03115

alternative hypothesis: two.sided

But this does not work because HairEye data has n=592 total frequency. An exact test is
unnecessary in this case.

> fisher.test(HairEye)

Error in fisher.test(HairEye) : FEXACT error 6.

LDKEY is too small for this problem.

Try increasing the size of the workspace.
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3.4 Mantel-Haenszel test and conditional association

Use the mantelhaen.test(X) function to perform a Cochran-Mantel-Haenszel χ2 chi test of the null
hypothesis that two nominal variables are conditionally independent, A ⊥ B |C, in each stratum,
assuming that there is no three-way interaction. X is a 3 dimensional contingency table, where the
last dimension refers to the strata.

The UCBAdmissions serves as an example of a 2 × 2 × 6 table, with Dept as the stratifying
variable.

> ## UC Berkeley Student Admissions

> mantelhaen.test(UCBAdmissions)

Mantel-Haenszel chi-squared test with continuity correction

data: UCBAdmissions

Mantel-Haenszel X-squared = 1.4269, df = 1, p-value = 0.2323

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

0.7719074 1.0603298

sample estimates:

common odds ratio

0.9046968

The results show no evidence for association between admission and gender when adjusted for
department. However, we can easily see that the assumption of equal association across the strata
(no 3-way association) is probably violated. For 2 × 2 × k tables, this can be examimed from the
odds ratios for each 2× 2 table (oddsratio()), and tested by using woolf_test() in vcd.

> oddsratio(UCBAdmissions, log=FALSE)

odds ratios for Admit and Gender by Dept

A B C D E F

0.3492120 0.8025007 1.1330596 0.9212838 1.2216312 0.8278727

> lor <- oddsratio(UCBAdmissions) # capture log odds ratios

> summary(lor)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)

Admitted:Rejected/Male:Female|A -1.052076 0.262708 -4.0047 6.209e-05 ***

Admitted:Rejected/Male:Female|B -0.220023 0.437593 -0.5028 0.6151

Admitted:Rejected/Male:Female|C 0.124922 0.143942 0.8679 0.3855

Admitted:Rejected/Male:Female|D -0.081987 0.150208 -0.5458 0.5852

Admitted:Rejected/Male:Female|E 0.200187 0.200243 0.9997 0.3174

Admitted:Rejected/Male:Female|F -0.188896 0.305164 -0.6190 0.5359

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

> woolf_test(UCBAdmissions)
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Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)

data: UCBAdmissions

X-squared = 17.902, df = 5, p-value = 0.003072

We can visualize the odds ratios of Admission for each department with fourfold displays using
fourfold(). The cell frequencies nij of each 2× 2 table are shown as a quarter circle whose radius
is proportional to

√
nij , so that its area is proportional to the cell frequency. Confidence rings for

the odds ratio allow a visual test of the null of no association; the rings for adjacent quadrants
overlap iff the observed counts are consistent with the null hypothesis. In the extended version
(the default), brighter colors are used where the odds ratio is significantly different from 1. The
following lines produce Figure 2.7

> col <- c("#99CCFF", "#6699CC", "#F9AFAF", "#6666A0", "#FF0000", "#000080")

> fourfold(UCB,mfrow=c(2,3), color=col)
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Figure 2: Fourfold display for the UCBAdmissions data. Where the odds ratio differs significantly
from 1.0, the confidence bands do not overlap, and the circle quadrants are shaded more intensely.

Another vcd function, cotabplot(), provides a more general approach to visualizing conditional
associations in contingency tables, similar to trellis-like plots produced by coplot() and lattice
graphics. The panel argument supplies a function used to render each conditional subtable. The
following gives a display (not shown) similar to Figure 2.

> cotabplot(UCB, panel = cotab_fourfold)

When we want to view the conditional probabilities of a response variable (e.g., Admit) in relation
to several factors, an alternative visualization is a doubledecker() plot. This plot is a specialized

7The color values col[3:4] were modified from their default values to show a greater contrast between significant
and insignifcant associations here.
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version of a mosaic plot, which highlights the levels of a response variable (plotted vertically) in
relation to the factors (shown horizontally). The following call produces Figure 3, where we use
indexing on the first factor (Admit) to make Admitted the highlighted level.

In this plot, the association between Admit and Gender is shown where the heights of the
highlighted conditional probabilities do not align. The excess of females admitted in Dept A stands
out here.

> doubledecker(Admit ~ Dept + Gender, data=UCBAdmissions[2:1,,])

Dept
Gender

A
Male Female

B
Male Female

C
Male Female

D
Male Female

E
MaleFemale

F
Male Female

Admitted

Rejected

Admit

Figure 3: Doubledecker display for the UCBAdmissions data. The heights of the highlighted bars
show the conditional probabilities of Admit, given Dept and Gender.

Finally, the there is a plot() method for oddsratio objects. By default, it shows the 95%
confidence interval for the log odds ratio. Figure 4 is produced by:

> plot(lor, xlab="Department", ylab="Log Odds Ratio (Admit | Gender)")

3.5 Cochran-Mantel-Haenszel tests for ordinal factors

The standard χ2 tests for association in a two-way table treat both table factors as nominal (un-
ordered) categories. When one or both factors of a two-way table are quantitative or ordinal, more
powerful tests of association may be obtaianed by taking ordinality into account, using row and or
column scores to test for linear trends or differences in row or column means.

More general versions of the CMH tests (Landis etal., 1978) are provided by assigning numeric
scores to the row and/or column variables. For example, with two ordinal factors (assumed to
be equally spaced), assigning integer scores, 1:R and 1:C tests the linear × linear component of
association. This is statistically equivalent to the Pearson correlation between the integer-scored
table variables, with χ2 = (n − 1)r2, with only 1 df rather than (R − 1) × (C − 1) for the test of
general association.
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Figure 4: Log odds ratio plot for the UCBAdmissions data.

When only one table variable is ordinal, these general CMH tests are analogous to an ANOVA,
testing whether the row mean scores or column mean scores are equal, again consuming fewer df
than the test of general association.

The CMHtest() function in vcdExtra now calculates these various CMH tests for two possibly
ordered factors, optionally stratified other factor(s).

Example : Recall the 4× 4 table, JobSat introduced in Section 2,

> JobSat

satisfaction

income VeryD LittleD ModerateS VeryS

< 15k 1 3 10 6

15-25k 2 3 10 7

25-40k 1 6 14 12

> 40k 0 1 9 11

Treating the satisfaction levels as equally spaced, but using midpoints of the income categories
as row scores gives the following results:

> CMHtest(JobSat, rscores=c(7.5,20,32.5,60))

Cochran-Mantel-Haenszel Statistics for income by satisfaction

AltHypothesis Chisq Df Prob

cor Nonzero correlation 3.8075 1 0.051025

rmeans Row mean scores differ 4.4774 3 0.214318

cmeans Col mean scores differ 3.8404 3 0.279218

general General association 5.9034 9 0.749549
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Note that with the relatively small cell frequencies, the test for general give no evidence for
association. However, the the cor test for linear x linear association on 1 df is nearly significant.
The coin contains the functions cmh_test() and lbl_test() for CMH tests of general association
and linear x linear association respectively.

3.6 Measures of Association

There are a variety of statistical measures of strength of association for contingency tables— similar
in spirit to r or r2 for continuous variables. With a large sample size, even a small degree of
association can show a significant χ2, as in the example below for the GSS data.

The assocstats() function in vcd calculates the φ contingency coefficient, and Cramer’s V for
an r × c table. The input must be in table form, a two-way r × c table. It won’t work with GSS in
frequency form, but by now you should know how to convert.

> assocstats(GSStab)

X^2 df P(> X^2)

Likelihood Ratio 7.0026 2 0.030158

Pearson 7.0095 2 0.030054

Phi-Coefficient : NA

Contingency Coeff.: 0.084

Cramer's V : 0.085

For tables with ordinal variables, like JobSat, some people prefer the Goodman-Kruskal γ
statistic (Agresti (2002, §2.4.3)) based on a comparison of concordant and discordant pairs of
observations in the case-form equivalent of a two-way table.

> GKgamma(JobSat)

gamma : 0.221

std. error : 0.117

CI : -0.009 0.451

A web article by Richard Darlington, http://www.psych.cornell.edu/Darlington/crosstab/
TABLE0.HTM gives further description of these and other measures of association.

3.7 Measures of Agreement

The Kappa() function in the vcd package calculates Cohen’s κ and weighted κ for a square two-way
table with the same row and column categories (Cohen 1960).8 Normal-theory z-tests are obtained
by dividing κ by its asymptotic standard error (ASE). A confint() method for Kappa objects
provides confidence intervals.

> (K <- Kappa(SexualFun))

value ASE z Pr(>|z|)

Unweighted 0.1293 0.06860 1.885 0.059387

Weighted 0.2374 0.07832 3.031 0.002437

> confint(K)

8 Don’t confuse this with kappa() in base R that computes something entirely different (the condition number of
a matrix).
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Kappa lwr upr

Unweighted -0.005120399 0.2637809

Weighted 0.083883432 0.3908778

A visualization of agreement, both unweighted and weighted for degree of departure from exact
agreement is provided by the agreementplot() function. Figure 5 shows the agreementplot for the
SexualFun data, produced as shown below. The Bangdiwala measures represent the proportion
of the shaded areas of the diagonal rectangles, using weights w1 for exact agreement, and w2 for
partial agreement one step from the main diagonal.

> agree <- agreementplot(SexualFun, main="Is sex fun?")

> unlist(agree)

Bangdiwala Bangdiwala_Weighted weights1 weights2

0.1464624 0.4981723 1.0000000 0.8888889
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Figure 5: Agreement plot for the SexualFun data.

In other examples, the agreement plot can help to show sources of disagreement. For example,
when the shaded boxes are above or below the diagonal (red) line, a lack of exact agreement can
be attributed in part to different frequency of use of categories by the two raters– lack of marginal
homogeneity.

3.8 Correspondence analysis

Use the ca package for correspondence analysis for visually exploring relationships between rows and
columns in contingency tables. For an r× c table, the method provides a breakdown of the Pearson
χ2 for association in up to M = min(r − 1, c − 1) dimensions, and finds scores for the row (xim)
and column (yjm) categories such that the observations have the maximum possible correlations.9

Here, we carry out a simple correspondence analysis of the HairEye data. The printed results
show that nearly 99% of the association between hair color and eye color can be accounted for in 2
dimensions, of which the first dimension accounts for 90%.

9 Related methods are the non-parametric CMH tests using assumed row/column scores (Section 3.5), the anal-
ogous glm() model-based methods (Section 3.5), and the more general RC models which can be fit using gnm().
Correspondence analysis differs in that it is a primarily descriptive/exploratory method (no significance tests), but
is directly tied to informative graphic displays of the row/column categories.
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> library(ca)

> ca(HairEye)

Principal inertias (eigenvalues):

1 2 3

Value 0.208773 0.022227 0.002598

Percentage 89.37% 9.52% 1.11%

Rows:

Black Brown Red Blond

Mass 0.182432 0.483108 0.119932 0.214527

ChiDist 0.551192 0.159461 0.354770 0.838397

Inertia 0.055425 0.012284 0.015095 0.150793

Dim. 1 -1.104277 -0.324463 -0.283473 1.828229

Dim. 2 1.440917 -0.219111 -2.144015 0.466706

Columns:

Brown Hazel Green Blue

Mass 0.371622 0.157095 0.108108 0.363176

ChiDist 0.500487 0.288654 0.385727 0.553684

Inertia 0.093086 0.013089 0.016085 0.111337

Dim. 1 -1.077128 -0.465286 0.354011 1.198061

Dim. 2 0.592420 -1.122783 -2.274122 0.556419

The resulting ca object can be plotted just by running the plot() method on the ca object,
giving the result in Figure 6. plot.ca() does not allow labels for dimensions; these can be added
with title(). It can be seen that most of the association is accounted for by the ordering of both
hair color and eye color along Dimension 1, a dark to light dimension.

> plot(ca(HairEye), main="Hair Color and Eye Color")

> title(xlab="Dim 1 (89.4%)", ylab="Dim 2 (9.5%)")

4 Loglinear Models

You can use the loglm() function in the MASS package to fit log-linear models. Equivalent models
can also be fit (from a different perspective) as generalized linear models with the glm() function
using the family=’poisson’ argument, and the gnm package provides a wider range of generalized
nonlinear models, particularly for testing structured associations. The visualization methods for
these models were originally developed for models fit using loglm(), so this approach is emphasized
here. Some extensions of these methods for models fit using glm() and gnm() are contained in the
vcdExtra package and illustrated in Section 4.2.

Assume we have a 3-way contingency table based on variables A, B, and C. The possible different
forms of loglinear models for a 3-way table are shown in Table 2. The Model formula column
shows how to express each model for loglm() in R.10 In the Interpretation column, the symbol
“⊥” is to be read as “is independent of,” and “ | ” means “conditional on,” or “adjusting for,” or just
“given”.

10 For glm(), or gnm(), with the data in the form of a frequency data.frame, the same model is specified in the
form glm(Freq ∼ ..., family="poisson"), where Freq is the name of the cell frequency variable and ... specifies
the Model formula.
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Figure 6: Correspondence analysis plot for the HairEye data.

For example, the formula ~A + B + C specifies the model of mutual independence with no as-
sociations among the three factors. In standard notation for the expected frequencies mijk, this
corresponds to

log(mijk) = µ+ λAi + λBj + λCk ≡ A + B + C

The parameters λAi , λ
B
j and λCk pertain to the differences among the one-way marginal frequencies

for the factors A, B and C.

Similarly, the model of joint independence, (AB) ⊥ C, allows an association between A and B,
but specifies that C is independent of both of these and their combinations,

log(mijk) = µ+ λAi + λBj + λCk + λAB
ij ≡ A * B + C

where the parameters λAB
ij pertain to the overall association between A and B (collapsing over C).

Table 2: Log-linear Models for Three-Way Tables

Model Model formula Symbol Interpretation

Mutual independence ~A + B + C [A][B][C] A ⊥ B ⊥ C
Joint independence ~A*B + C [AB][C] (AB) ⊥ C
Conditional independence ~(A+B)*C [AC][BC] (A ⊥ B) |C
All two-way associations ~A*B + A*C + B*C [AB][AC][BC] homogeneous association
Saturated model ~A*B*C [ABC] 3-way association
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In the literature or text books, you will often find these models expressed in shorthand sym-
bolic notation, using brackets, [ ] to enclose the high-order terms in the model. Thus, the joint
independence model can be denoted [AB][C], as shown in the Symbol column in Table 2.

Models of conditional independence allow (and fit) two of the three possible two-way associa-
tions. There are three such models, depending on which variable is conditioned upon. For a given
conditional independence model, e.g., [AB][AC], the given variable is the one common to all terms,
so this example has the interpretation (B ⊥ C) |A.

4.1 Fitting with loglm()

For example, we can fit the model of mutual independence among hair color, eye color and sex in
HairEyeColor as

> library(MASS)

> ## Independence model of hair and eye color and sex.

> hec.1 <- loglm(~Hair+Eye+Sex, data=HairEyeColor)

> hec.1

Call:

loglm(formula = ~Hair + Eye + Sex, data = HairEyeColor)

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 166.3001 24 0

Pearson 164.9247 24 0

Similarly, the models of conditional independence and joint independence are specified as

> ## Conditional independence

> hec.2 <- loglm(~(Hair + Eye) * Sex, data=HairEyeColor)

> hec.2

Call:

loglm(formula = ~(Hair + Eye) * Sex, data = HairEyeColor)

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 156.6779 18 0

Pearson 147.9440 18 0

> ## Joint independence model.

> hec.3 <- loglm(~Hair*Eye + Sex, data=HairEyeColor)

> hec.3

Call:

loglm(formula = ~Hair * Eye + Sex, data = HairEyeColor)

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 19.85656 15 0.1775045

Pearson 19.56712 15 0.1891745
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Note that printing the model gives a brief summary of the goodness of fit. A set of models can be
compared using the anova() function.

> anova(hec.1, hec.2, hec.3)

LR tests for hierarchical log-linear models

Model 1:

~Hair + Eye + Sex

Model 2:

~(Hair + Eye) * Sex

Model 3:

~Hair * Eye + Sex

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)

Model 1 166.30014 24

Model 2 156.67789 18 9.62225 6 0.14149

Model 3 19.85656 15 136.82133 3 0.00000

Saturated 0.00000 0 19.85656 15 0.17750

4.2 Fitting with glm() and gnm()

The glm() approach, and extensions of this in the gnm package allows a much wider class of models
for frequency data to be fit than can be handled by loglm(). Of particular importance are models
for ordinal factors and for square tables, where we can test more structured hypotheses about the
patterns of association than are provided in the tests of general assosiation under loglm(). These
are similar in spirit to the non-parametric CMH tests described in Section 3.5.

Example : The data Mental in the vcdExtra package gives a two-way table in frequency form

classifying young people by their mental health status and parents’ socioeconomic status (SES),
where both of these variables are ordered factors.

> str(Mental)

'data.frame': 24 obs. of 3 variables:

$ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 2 2 2 2 3 3 ...

$ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 4 1 2 3 4 1 2 ...

$ Freq : int 64 94 58 46 57 94 54 40 57 105 ...

> xtabs(Freq ~ mental+ses, data=Mental) # display the frequency table

ses

mental 1 2 3 4 5 6

Well 64 57 57 72 36 21

Mild 94 94 105 141 97 71

Moderate 58 54 65 77 54 54

Impaired 46 40 60 94 78 71

Simple ways of handling ordinal variables involve assigning scores to the table categories, and the
simplest cases are to use integer scores, either for the row variable (“column effects” model), the
column variable (“row effects” model), or both (“uniform association” model).

> indep <- glm(Freq ~ mental + ses, family = poisson, data = Mental) # independence model
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To fit more parsimonious models than general association, we can define numeric scores for the row
and column categories

> # Use integer scores for rows/cols

> Cscore <- as.numeric(Mental$ses)

> Rscore <- as.numeric(Mental$mental)

Then, the row effects model, the column effects model, and the uniform association model can be
fit as follows:

> # column effects model (ses)

> coleff <- glm(Freq ~ mental + ses + Rscore:ses, family = poisson, data = Mental)

> # row effects model (mental)

> roweff <- glm(Freq ~ mental + ses + mental:Cscore, family = poisson, data = Mental)

> # linear x linear association

> linlin <- glm(Freq ~ mental + ses + Rscore:Cscore, family = poisson, data = Mental)

The Summarize() in vcdExtra provides a nice, compact summary of the fit statistics for a set of
models, collected into a ”glmlist”object. Smaller is better for AIC and BIC.

> # compare models using AIC, BIC, etc

> vcdExtra::LRstats(glmlist(indep, roweff, coleff, linlin))

Likelihood summary table:

AIC BIC LR Chisq Df Pr(>Chisq)

indep 209.59 220.19 47.418 15 3.155e-05 ***

roweff 174.45 188.59 6.281 12 0.9013

coleff 179.00 195.50 6.829 10 0.7415

linlin 174.07 185.85 9.895 14 0.7698

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

For specific model comparisons, we can also carry out tests of nested models with anova() when
those models are listed from smallest to largest. Here, there are two separate paths from the most
restrictive (independence) model through the model of uniform association, to those that allow only
one of row effects or column effects.

> anova(indep, linlin, coleff, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ mental + ses

Model 2: Freq ~ mental + ses + Rscore:Cscore

Model 3: Freq ~ mental + ses + Rscore:ses

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15 47.418

2 14 9.895 1 37.523 9.035e-10 ***

3 10 6.829 4 3.066 0.5469

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

> anova(indep, linlin, roweff, test="Chisq")
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Analysis of Deviance Table

Model 1: Freq ~ mental + ses

Model 2: Freq ~ mental + ses + Rscore:Cscore

Model 3: Freq ~ mental + ses + mental:Cscore

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15 47.418

2 14 9.895 1 37.523 9.035e-10 ***

3 12 6.281 2 3.614 0.1641

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

The model of linear by linear association seems best on all accounts. For comparison, one might
try the CMH tests on these data:

> CMHtest(xtabs(Freq~ses+mental, data=Mental))

Cochran-Mantel-Haenszel Statistics for ses by mental

AltHypothesis Chisq Df Prob

cor Nonzero correlation 37.156 1 1.0907e-09

rmeans Row mean scores differ 40.297 5 1.3012e-07

cmeans Col mean scores differ 40.666 3 7.6971e-09

general General association 45.958 15 5.4003e-05

4.3 Non-linear terms

The strength of the gnm package is that it handles a wide variety of models that handle non-linear
terms, where the parameters enter the model beyond a simple linear function. The simplest example
is the Goodman RC(1) model, which allows a multiplicative term to account for the association
of the table variables. In the notation of generalized linear models with a log link, this can be
expressed as

logµij = αi + βj + γiδj

where the row-multiplicative effect parameters γi and corresponding column parameters δj are
estimated from the data.11 Similarly, the RC(2) model adds two multiplicative terms to the inde-
pendence model,

logµij = αi + βj + γi1δj1 + γi2δj2

In the gnm package, these models may be fit using the Mult() to specify the multiplicative term,
and instances() to specify several such terms.

Example : For the Mental data, we fit the RC(1) and RC(2) models, and compare these with

the independence model.

> RC1 <- gnm(Freq ~ mental + ses + Mult(mental,ses), data=Mental,

+ family=poisson, , verbose=FALSE)

> RC2 <- gnm(Freq ~ mental+ses + instances(Mult(mental,ses),2), data=Mental,

+ family=poisson, verbose=FALSE)

> anova(indep, RC1, RC2, test="Chisq")

11 This is similar in spirit to a correspondence analysis with a single dimension, but as a statistical model.
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Analysis of Deviance Table

Model 1: Freq ~ mental + ses

Model 2: Freq ~ mental + ses + Mult(mental, ses)

Model 3: Freq ~ mental + ses + Mult(mental, ses, inst = 1) + Mult(mental,

ses, inst = 2)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15 47.418

2 9 40.230 6 7.188 0.3038

3 3 0.523 6 39.707 5.2e-07 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

5 Mosaic plots

Mosaic plots provide an ideal method both for visualizing contingency tables and for visualizing the
fit— or more importantly— lack of fit of a loglinear model. For a two-way table, mosaic() fits a
model of independence, [A][B] or ~A+B as an R formula. For n-way tables, mosaic() can fit any
loglinear model, and can also be used to plot a model fit with loglm(). See Friendly (1994, 1999)
for the statistical ideas behind these uses of mosaic displays in connection with loglinear models.

The essential idea is to recursively sub-divide a unit square into rectangular “tiles” for the cells
of the table, such that the are area of each tile is proportional to the cell frequency. For a given
loglinear model, the tiles can then be shaded in various ways to reflect the residuals (lack of fit) for
a given model. The pattern of residuals can then be used to suggest a better model or understand
where a given model fits or does not fit.

mosaic() provides a wide range of options for the directions of splitting, the specification of
shading, labeling, spacing, legend and many other details. It is actually implemented as a special
case of a more general class of displays for n-way tables called strucplot, including sieve diagrams,
association plots, double-decker plots as well as mosaic plots. For details, see help(strucplot) and
the “See also” links, and also Meyer, Zeileis, and Hornik (2006), which is available as an R vignette
via vignette("strucplot", package="vcd").

Figure 1, showing the association between Treatment and Improved was produced with the
following call to mosaic().

> mosaic(art, gp = shading_max, split_vertical = TRUE,

+ main="Arthritis: [Treatment] [Improved]")

Note that the residuals for the independence model were not large (as shown in the legend), yet the
association between Treatment and Improved is highly significant.

> summary(art)

Call: xtabs(formula = ~Treatment + Improved, data = Arthritis)

Number of cases in table: 84

Number of factors: 2

Test for independence of all factors:

Chisq = 13.055, df = 2, p-value = 0.001463

In contrast, one of the other shading schemes, from Friendly (1994) (use: gp = shading_Friendly),
uses fixed cutoffs of ±2,±4, to shade cells which are individually significant at approximately
α = 0.05 and α = 0.001 levels, respectively. The right panel below uses gp = shading_Friendly.
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5.1 Mosaics for loglinear models

When you have fit a loglinear model using loglm(), and saved the result (as a loglm object)
the simplest way to display the results is to use the plot() method for the loglm object. Calling
mosaic(loglm.object) has the same result. In Section 4.1 above, we fit several different models
to the HairEyeColor data. We can produce mosaic displays of each just by plotting them:

> # mosaic plots, using plot.loglm() method

> plot(hec.1, main="model: [Hair][Eye][Sex]")

> plot(hec.2, main="model: [HairSex][EyeSex]")

> plot(hec.3, main="model: [HairEye][Sex]")
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Alternatively, you can supply the model formula to mosaic() with the expected argument.
This is passed to loglm(), which fits the model, and returns residuals used for shading in the plot.

For example, here we examine the TV2 constructed in Section 2.8 above. The goal is to see how
Network choice depends on (varies with) Day and Time. To do this:

� We fit a model of joint independence of Network on the combinations of Day and Time, with
the model formula ~Day:Time + Network.

� To make the display more easily read, we place Day and Time on the vertical axis and Network

on the horizontal,

� The Time values overlap on the right vertical axis, so we use level() to abbreviate them.
mosaic() also supports a more sophisticated set of labeling functions. Instead of changing the
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data table, we could have used labeling_args = list(abbreviate = c(Time = 2)) for a
similar effect.

The following call to mosaic() produces Figure 7:

> dimnames(TV2)$Time <- c("8", "9", "10") # re-level for mosaic display

> mosaic(~ Day + Network + Time, data=TV2, expected=~Day:Time + Network,

+ legend=FALSE, gp=shading_Friendly)
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Figure 7: Mosaic plot for the TV data showing model of joint independence, Day:Time + Network .

From this, it is easy to read from the display how network choice varies with day and time.
For example, CBS dominates in all time slots on Monday; ABC and NBC dominate on Tuesday,
particularly in the later time slots; Thursday is an NBC day, while on Friday, ABC gets the greatest
share.

In interpreting this mosaic and other plots, it is important to understand that associations
included in the model—here, that between day and time—are not shown in the shading of the cells,
because they have been fitted (taken into account) in the loglinear model.

For comparison, you might want to try fitting the model of homogeneous association. This
allows all pairs of factors to be associated, but asserts that each pairwise association is the same
across the levels of the remaining factor. The resulting plot displays the contributions to a 3-way
association, but is not shown here.
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> mosaic(~ Day + Network + Time, data=TV2,

+ expected=~Day:Time + Day:Network + Time:Network,

+ legend=FALSE, gp=shading_Friendly)

5.2 Mosaics for glm() and gnm() models

The vcdExtra package provides an additional method, mosaic.glm() for models fit with glm() and
gnm().12 These are not restricted to the Poisson family, but only apply to cases where the response
variable is non-negative.

Example : Here, we plot the independence and the linear-by-linear association model for the

Mental health data from Section 4.2. These examples illustrate some of the options for labeling
(variable names and residuals printed in cells). Note that the formula supplied to mosaic() for
”glm”objects refers to the order of factors displayed in the plot, not the model.

> long.labels <- list(set_varnames = c(mental="Mental Health Status", ses="Parent SES"))

> mosaic(indep, ~ses+mental, residuals_type="rstandard",

+ labeling_args = long.labels, labeling=labeling_residuals,

+ main="Mental health data: Independence")

> mosaic(linlin, ~ses+mental, residuals_type="rstandard",

+ labeling_args = long.labels, labeling=labeling_residuals, suppress=1,

+ gp=shading_Friendly, main="Mental health data: Linear x Linear")
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The gnm package also fits a wide variety of models with nonlinear terms or terms for structured
associations of table variables. In the following, we fit the RC(1) model

log(mij) = µ+ λAi + λBj + φµiνj

This is similar to the linear by linear model, except that the row effect parameters (µi) and column
parameters (νj) are estimated from the data rather than given assigned equally-spaced values. The
multiplicative terms are specified by the Mult().

12 Models fit with gnm() are of class = c("gnm", "glm", "lm"), so all *.glm methods apply, unless overridden in
the gnm package.
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> Mental$mental <- C(Mental$mental, treatment)

> Mental$ses <- C(Mental$ses, treatment)

> RC1model <- gnm(Freq ~ mental + ses + Mult(mental, ses),

+ family = poisson, data = Mental)

> mosaic(RC1model, residuals_type="rstandard", labeling_args = long.labels,

+ labeling=labeling_residuals, suppress=1, gp=shading_Friendly,

+ main="Mental health data: RC(1) model")

Other forms of nonlinear terms are provided for the inverse of a predictor (Inv()) and the expo-
nential of a predictor (Exp()). You should read vignette("gnmOverview", package="gnm") for
further details.

5.3 Mosaic tips and techniques

The vcd package implements an extremely general collection of graphical methods for n-way fre-
quency tables within the strucplot framework, which includes mosaic plots (mosaic()), as well as
association plots (assoc()), sieve diagrams (sieve()), as well as tabular displays (structable()).

The graphical methods in vcd support a wide of options that control almost all of the details
of the plots, but it is often difficult to determine what arguments you need to supply to achieve a
given effect from the help(). As a first step, you should read the vignette("strucplot") in vcd
to understand the overall structure of these plot methods. The notes below describe a few useful
things that may not be obvious, or can be done in different ways.

5.3.1 Changing the labels for variables and levels

With data in contingency table form or as a frequency data frame, it often happens that the variable
names and/or the level values of the factors, while suitable for analysis, are less than adequate when
used in mosaic plots and other strucplot displays.

For example, we might prefer that a variable named ses appear as "Socioeconomic Status",
or a factor with levels c("M", "F") be labeled using c("Male", "Female") in a plot. Or, some-
times we start with a factor whose levels are fully spelled out (e.g., c("strongly disagree",

"disagree", "neutral", "agree", "strongly agree")), only to find that the level labels over-
lap in graphic displays.

The structplot framework in vcd provides an extremely large variety of functions and options
for controlling almost all details of text labels in mosaics and other plots. See help(labelings)

for an overview.
For example, in Section 2.1 we showed how to rearrange the dimensions of the UCBAdmissions

table, change the names of the table variables, and relabel the levels of one of the table variables.
The code below changes the actual table for plotting purposes, but we pointed out that these
changes can create other problems in analysis.

> UCB <- aperm(UCBAdmissions, c(2, 1, 3))

> names(dimnames(UCB)) <- c("Sex", "Admit?", "Department")

> dimnames(UCB)[[2]] <- c("Yes", "No")

The same effects can be achieved without modifying the data using the set_varnames and
set_labels options in mosaic() as follows:

> vnames <- list(set_varnames = c(Admit="Admission", Gender="Sex", Dept="Department"))

> lnames <- list(Admit = c("Yes", "No"),

+ Gender = c("Males", "Females"),

+ Dept = LETTERS[1:6])

> mosaic(UCBAdmissions, labeling_args=vnames, set_labels=lnames)
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In some cases, it may be sufficient to abbreviate (or clip, or rotate) level names to avoid overlap.
For example, the statements below produce another version of Figure 7 with days of the week
abbreviated to their first three letters. Section 4 in the vignette("strucplot") provides many
other examples.

> dimnames(TV2)$Time <- c("8", "9", "10") # re-level for mosaic display

> mosaic(~ Day + Network + Time, data=TV2, expected=~Day:Time + Network,

+ legend=FALSE, gp=shading_Friendly,

+ labeling_args=list(abbreviate=c(Day=3)) )

6 Continuous predictors

When continuous predictors are available—and potentially important— in explaining a categorical
outcome, models for that outcome include: logistic regression (binary response), the proportional
odds model (ordered polytomous response), multinomial (generalized) logistic regression. Many of
these are special cases of the generalized linear model using the "poisson" or "binomial" family
and their relatives.

6.1 Spine and conditional density plots

I don’t go into fitting such models here, but I would be remiss not to illustrate some visualizations
in vcd that are helpful here. The first of these is the spine plot or spinogram (Hummel 1996)
(produced with spine()). These are special cases of mosaic plots with specific spacing and shading
to show how a categorical response varies with a continuous or categorical predictor.

They are also a generalization of stacked bar plots where not the heights but the widths of the
bars corresponds to the relative frequencies of x. The heights of the bars then correspond to the
conditional relative frequencies of y in every x group.

Example : For the Arthritis data, we can see how Improved varies with Age as follows.

spine() takes a formula of the form y ~ x with a single dependent factor and a single explanatory
variable x (a numeric variable or a factor). The range of a numeric variablex is divided into intervals
based on the breaks argument, and stacked bars are drawn to show the distribution of y as x varies.
As shown below, the discrete table that is visualized is returned by the function.

> (spine(Improved ~ Age, data = Arthritis, breaks = 3))

Improved

Age None Some Marked

[20,40] 10 3 2

(40,60] 21 3 17

(60,80] 11 8 9

> (spine(Improved ~ Age, data = Arthritis, breaks = "Scott"))

Improved

Age None Some Marked

[20,30] 6 1 0

(30,40] 4 2 2

(40,50] 9 0 3

(50,60] 12 3 14

(60,70] 11 8 8

(70,80] 0 0 1
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The conditional density plot (Hofmann and Theus 2005) is a further generalization. This visual-
ization technique is similar to spinograms, but uses a smoothing approach rather than discretizing
the explanatory variable. As well, it uses the original x axis and not a distorted one.

> cdplot(Improved ~ Age, data = Arthritis)

> with(Arthritis, rug(jitter(Age), col="white", quiet=TRUE))
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Figure 8: Conditional density plot for the Arthritis data showing the variation of Improved with
Age.
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In such plots, it is useful to also see the distribution of the observations across the horizontal axis,
e.g., with a rug() plot. Figure 8 uses cdplot() from the graphics package rather than cd_plot()

from vcd, and is produced with

> cdplot(Improved ~ Age, data = Arthritis)

> with(Arthritis, rug(jitter(Age), col="white", quiet=TRUE))

From Figure 8 it can be easily seen that the proportion of patients reporting Some or Marked
improvement increases with Age, but there are some peculiar bumps in the distribution. These
may be real or artifactual, but they would be hard to see with most other visualization methods.
When we switch from non-parametric data exploration to parametric statistical models, such effects
are easily missed.

6.2 Model-based plots: effect plots and ggplot2 plots

The nonparametric conditional density plot uses smoothing methods to convey the distributions of
the response variable, but displays that are simpler to interpret can often be obtained by plotting
the predicted response from a parametric model.

For complex glm() models with interaction effects, the effects package provides the most useful
displays, plotting the predicted values for a given term, averaging over other predictors not included
in that term. I don’t illustrate this here, but see ?? and help(package="effects").

Here I just briefly illustrate the capabilities of the ggplot2 package for model-smoothed plots of
categorical responses in glm() models.

Example : The Donner data frame in vcdExtra gives details on the survival of 90 members of

the Donner party, a group of people who attempted to migrate to California in 1846. They were
trapped by an early blizzard on the eastern side of the Sierra Nevada mountains, and before they
could be rescued, nearly half of the party had died. What factors affected who lived and who died?

> data(Donner, package="vcdExtra")

> str(Donner)

'data.frame': 90 obs. of 5 variables:

$ family : Factor w/ 10 levels "Breen","Donner",..: 9 1 1 1 1 1 1 1 1 1 ...

$ age : int 23 13 1 5 14 40 51 9 3 8 ...

$ sex : Factor w/ 2 levels "Female","Male": 2 2 1 2 2 1 2 2 2 2 ...

$ survived: int 0 1 1 1 1 1 1 1 1 1 ...

$ death : POSIXct, format: "1846-12-29" NA NA NA ...

A potential model of interest is the logistic regression model for Pr(survived), allowing separate fits
for males and females as a function of age. The key to this is the stat_smooth() function, using
method = "glm", method.args = list(family = binomial). The formula = y ~ x specifies a
linear fit on the logit scale (Figure 9, left)

> # separate linear fits on age for M/F

> ggplot(Donner, aes(age, survived, color = sex)) +

+ geom_point(position = position_jitter(height = 0.02, width = 0)) +

+ stat_smooth(method = "glm", method.args = list(family = binomial), formula = y ~ x,

+ alpha = 0.2, size=2, aes(fill = sex))

Alternatively, we can allow a quadratic relation with age by specifying formula = y ~ poly(x,2)

(Figure 9, right).
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> # separate quadratics

> ggplot(Donner, aes(age, survived, color = sex)) +

+ geom_point(position = position_jitter(height = 0.02, width = 0)) +

+ stat_smooth(method = "glm", method.args = list(family = binomial), formula = y ~ poly(x,2),

+ alpha = 0.2, size=2, aes(fill = sex))
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Figure 9: Logistic regression plots for the Donner data showing survival vs. age, by sex. Left: linear
logistic model; right: quadratic model

These plots very nicely show (a) the fitted Pr(survived) for males and females; (b) confidence
bands around the smoothed model fits and (c) the individual observations by jittered points at 0
and 1 for those who died and survided, respectively.
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